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Abstract—Mobile Edge Computing (MEC) is a promising tech-
nique that provides distributed computing and storage resources
at the edge of a network. In this talk, we investigate a stochastic
optimization problem to minimize the cost of MEC system.
Firstly, we use the stability of the task buffer queue as constraints
to formulate the cost minimization problem. Then we propose the
Lyapunov optimization theory to transform the original problem
into a deterministic problem. The optimal CPU frequency and
optimal transmit power can be obtained in a closed form. In
addition, we establish a [O(1/V), O(V)] tradeoff between the
system cost and execution latency. Simulation results are provided
to verify theoretical analysis and demonstrate the effects of
various parameters.

Index Terms—Mobile edge computing, Cost minimization,
Lyapunov optimization

I. INTRODUCTION

With the growing explosion of smart devices such as smart

phones, tablet computers, and wearable devices, the overall

mobile data traffic is expected to increase by more than

46% annually to 77 exabytes per month by 2022 [1]. More

and more computation-intensive applications (e.g., augmented

reality, virtual reality, face recognition, and interactive online

gaming) have emerged and attracted great attention. However,

existing mobile devices are generally resource-constrained and

cannot process these applications in real time. Therefore, it is

necessary to improve the computation performance. Compu-

tation offloading is considered as an effective way to improve

computation performance of mobile devices.

In conventional cloud computing systems, computation

tasks are offloaded to remote cloud servers which would

produce huge transmission delay. Different from cloud com-

puting, mobile edge computing (MEC) [2], [3], [4] can provide

distributed computing and storage resources at the edge of

networks close to mobile users. By offloading computation

tasks to MEC servers, the MEC system cannot only reduce

the power consumption but also can improve the computation

performance.

Some recent studies [5], [6], [7] focus on minimizing system

cost or maximizing the profit of MEC servers or making

the tradeoff between the system cost and execution delay

in the MEC system. In [5], the authors propose an unified

optimization framework to maximize the profit of the mobile

service provider. In [6], the DJORC algorithm is proposed to

maximize the MEC server’s economical profit. In [7], based

on Lyapunov optimization, the DDROV algorithm is proposed

to balance the cost-delay tradeoff in the competition scenario.

In this paper, we consider the problem of system cost mini-

mization in a cooperative scenario. In the cooperative scenario,

we consider the situation that a university provides MEC

server, and mobile users are students. Then the MEC server

will provide the free MEC service to the mobile users. In the

MEC system, a part of the computation tasks are computed in

the mobile device and the other would be offloaded to MEC

servers. In addition, we formulate the stochastic optimization

problem which aims to minimize the system cost with the

queue stability as constraints. There are several challenges in

such a problem. Firstly, the stochastic optimization problem

needs the distribution information of the computation task

arrival and wireless channel. Secondly, the MEC system needs

to minimize the system monetary cost while maintaining the

low-latency, which requires the MEC system to make the

tradeoff between the two metrics. By leveraging the Lyapunov

optimization theory [8], we propose an algorithm to tackle the

monetary cost minimization problem.

The rest of this paper is organized as follows. The system

models including the computation model, and cost model are

given in Section II. Based on the proposed model, an system

monetary cost minimization problem is formulated in Section

III. Section IV describes the proposed algorithm. Section V

discusses the simulation results. At last, Section VI concludes

the paper.

II. SYSTEM MODEL

As shown in Fig. 1, the MEC system is consisting of a MEC

server which is located at the school and the mobile devices.

The MEC server provides free services for mobile devices. In

the MEC system, the mobile devices are running independent

and fine-grained tasks [9]. Time is slotted and the length of

the time slot is represented as τ , and the set of the time slot

is indexed by T � {0, 1 · · · }. Next, we describe the model

of several parts of the edge computing system in Figure.1 in

detail.

A. Computing Task and Task Queueing Model

At the beginning of the t-th time slot, mobile device gener-

ates a A(t) bits of computation task, with a processing density

λ (in CPU cycles/bit). Without loss of generality, we assume
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Fig. 1. The MEC system

the input data A(t) is independent and identically distributed

(i.i.d.) over time slots and is limited by 0 ≤ A(t) ≤ Amax.

In each time slot, a part of the computation tasks will

be executed at the mobile device, denoted as Dl(t). The

other computation tasks will be offloaded to the MEC server,

denoted as Dr(t). The arrived but not executed tasks will be

queued in the task buffers at the mobile device. The task buffer

of the mobile device is represented as Q(t), and we define

Q(0) = 0. The evolution of Q(t) can be expressed as

Q(t+ 1) = max{Q(t)−Dl(t)−Dr(t), 0}+A(t). (1)

Similarly, the tasks that have been offloaded but not exe-

cuted by the MEC server will be queued in the task buffers at

the MEC server. We denote the task buffer of the MEC server

as R(t), and define R(0) = 0. Then R(t) evolves according

to the following equation

R(t+ 1) = max{R(t)−Dc(t), 0}+Dr(t), (2)

where Dc(t) is the amount of computation tasks executed by

the MEC server at the t-th time slot.

B. Local computing model and Mobile-edge computing model

In this paper, computation tasks can be processed on mobile

devices or offloaded to MEC servers. Next we introduce the

local computing model and mobile-edge computing model,

respectively.

Local Computing Model: In the local computing model,

we denote the CPU-cycle frequency at the t-th time slot as

fl(t), and the maximum allowable CPU-cycle frequency is

defined as fmax
l , i.e.,

0 ≤ fl(t) ≤ fmax
l , t ∈ T. (3)

Denote the locally executed computation tasks as Dl(t), it can

be expressed as

Dl(t) = τfl(t)λ
−1. (4)

Therefore, the power consumption of the mobile device at

time slot t denoted as pl(t) can be given by

pl(t) = κf3
l (t), (5)

where κ is the effective energy coefficient related to the CPU

chip architecture [10].

Mobile-edge Computing Model: In the mobile-edge com-

puting model, the input data A(t) should be transferred to

the MEC server firstly. Then the computation task will be

processed in the MEC server, and the computation results will

be transmitted back to the mobile device. Since the size of

computation result is generally very small, the transmit process

of the computation results is negligible. Let p(t) denote the

transmission power of the mobile device, which cannot exceed

the maximum value pmax, i.e.,

0 ≤ p(t) ≤ pmax, t ∈ T. (6)

According to the Shannon formula, for AWGN channel, the

amount of computation task offloaded from the mobile device

at tth time slot can be expressed as

Dr(t) = ωτlog2(1 +
h(t)p(t)

σ
), (7)

where ω is the system bandwidth, σ is the noise power, h(t)
is the channel gain.

Thus, the energy consumption in computation offloading

can be given by

Er(t) = τp(t). (8)

After transferring the input data to MEC server, the com-

putation task can be processed by the MEC server. We denote

the CPU cycle frequency of the MEC server as fc(t), which

cannot exceed the maximum value fmax
c , i.e.,

0 ≤ fc(t) ≤ fmax
c , t ∈ T. (9)

Then Dc(t) can be expressed as

Dc(t) = τfc(t)λ
−1, (10)

Accordingly, we denote the power consumption of the

computation task A(t) executed on the MEC server at time

slot t as pc(t), it can be written as

pc(t) = κserf
3
c (t), (11)

where κser is the effective energy coefficient at the MEC

server related to the CPU chip architecture.

C. Cost Model

In this section, we will discuss the monetary cost of the

MEC system in the cooperative scenario, and define the system

cost as the sum of the monetary cost of mobile device and

MEC server.

On the user side, the mobile user needs to pay the following

types of monetary costs: energy cost for computing task locally

and energy cost for transferring the input data to the MEC

server. On the MEC server side, the MEC servers need to

pay the following types of monetary costs: electricity cost for

computing task, cost for renting radio bandwidth from network

operators. In this paper, we consider the system cost including

the cost of user side and the cost of MEC server side ,and

denoted as U(t), it can be given by

U(t) = αEl(t) + αEr(t) + αEc(t) + δDr(t), (12)
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where El(t), Ec(t) is the energy consumption of the mobile

device and the MEC server, respectively. α (in $/J) is a weight

parameter which transforms energy consumption into money

and depends on the human sensitiveness on money and energy

consumption [11], δ (in $/bit) is the price for renting radio

bandwidth from network operators.

III. PROBLEM FORMULATION

In this paper, we construct the optimization problem where

the objective is to minimize the time-averaged system cost

with the queue stability constraints of both user side and MEC

server side. Thus the optimization problem can be formulated

as

P1 : min
fl(t),p(t),fc(t)

lim
T→+∞

1

T

T−1∑
t=0

E{U(t)}

s.t.(3), (6), (9)

lim
T→+∞

1

T
E{Q(t) +R(t)} < ∞ (13)

where (3) is the CPU-cycle frequency constraint of the mobile

device, (6) is the transmit power constraint of the mobile

device, (9) is the CPU-cycle frequency constraint of the MEC

server, (13) is the queue stability constraint.

IV. ONLINE COMPUTATION OFFLOADING

ALGORITHM

In this section, we propose an online computation offloading

algorithm based on Lyapunov optimization theory to tackle

the problem of minimizing system cost, and then analyze the

performance of the proposed algorithm.

A. The OCO Algorithm

First, we define the quadratic Lyapunov function as

L[Θ(t)] � 1

2
[Q2(t) +R2(t)], (14)

where Θ(t) � [Q(t), R(t)]. Then the Lyapunov drift function

Δ[Θ(t)] can be represented as

Δ[Θ(t)] = E{L[Θ(t+ 1)]− L[Θ(t)] | Θ(t)} (15)

Based on Lyapunov optimization theory, in order to min-

imize the objective function in P1, the Lyapunov drift-plus-

penalty function is defined as

ΔV [Θ(t)] = Δ[Θ(t)] + V E[U(t) | Θ(t)], (16)

where V (in bit2/$) is a non-negative control parameter that

determines a tradeoff between system cost and system queue

length.

For ease of analysis, we derive the upper bound for

ΔV (Θ(t)), which is given by

ΔV (Θ(t)) ≤ C + E{Q(t)[A(t)−Dl(t)−Dr(t)]}
+ E{R(t)[Dr(t)−Dc(t)}+ V E[U(t)],

(17)

where C = 1
2 [A

2
max + (Dmax

l )2 + 2(Dmax
r )2 + (Dmax

c )2].
Proof: The proof is omitted due to space limitation.

Therefore, we convert the original optimization problem into

the problem of minimize the upper bound of ΔV (Θ(t)) in the

right-hand side of (17) at each time slot. And based on the

expression of ΔV (Θ(t)), we proposed an online computation

offloading algorithm to tackle this deterministic optimization

problem at each time slot, which is summarized in Algorithm
1. Note that the objective function of P2 corresponds to the

right-hand side of (17), where A(t) can be viewed as a constant

and obtained at the beginning of each time slot, and all the

constraints in P1 except the task buffer stability constraint in

(13) are retained in P2. The optimal solution for P2 will be

developed in the next subsection.

Algorithm 1 Online Computation Offloading Algorithm

1: Set t = 0, Q(0) = 0, R(0) = 0;

2: while t < T do
3: At each time slot, obtain A(t), Q(t), R(t).
4: Determine fl(t), p(t), fc(t) by solving

P2 : min
fl(t),p(t),fc(t)

−Q(t)[Dl(t) +Dr(t)] + V U(t)

+R(t)[Dr(t)−Dc(t)]

s.t. (3), (6), (9)

5: Update Q(t) and R(t) according to (1) and (2).

6: t ← t+ 1.

7: end while

B. Optimal Solution for P2
In this section, we will obtain the optimal CPU frequency

and optimal transmit power of the mobile device, and the

optimal CPU frequency of the MEC server by solving P2.
Optimal CPU frequency of the mobile device: After

decoupling fl(t) from P2, the optimal value of the fl(t) can

be obtained by solving the following problem

min
0≤fl(t)≤fmax

l

−Q(t)τfl(t)λ
−1 + ακτV f3

l (t), (18)

and its closed form optimal solution can be expressed as

f∗
l (t) = min{fmax

l ,

√
Q(t)

3ακλV
}. (19)

Optimal transmit power: After decoupling p(t) from P2,

the optimal value of p(t)can be obtained by solving

min
0≤p(t)≤pmax

[V δ+R(t)−Q(t)]τω log2(1+
p(t)h(t)

σ2
)+αp(t)τV.

(20)
Deriving the objective function to p(t) and rearranging the

term, then the optimal solution of p(t) can be expressed as

p∗(t) = min{max{ [Q(t)−R(t)− V δ]ω

αV ln2
− σ2

h(t)
, 0}, pmax}.

(21)
Optimal CPU frequency of the MEC server: Similarly,

after decoupling fc(t) from P2, the optimal value of fc(t) can

be obtained by solving:

min
0≤fc(t)≤fmax

c

−R(t)τfc(t)λ
−1 + ατκserV f3

c (t), (22)
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and its optimal solution can be expressed as

f∗
c (t) = min{fmax

c ,

√
R(t)

3ακλV
}. (23)

C. Performance Analysis

In this section, we present the main numerical results for

theoretical analysis of this paper based on Lyapunov optimiza-

tion theory, which shows the time-averaged system cost and

the time-averaged queue backlog of the task buffers can be

upper-bounded by the Theorem 1 when the proposed algorithm

is adopted.

Theorem 1: For the system defined in section II, when

adopting the proposed algorithm, the time-averaged system

cost satisfies

lim sup
T→∞

1

T

T−1∑
t=0

E{U(t)} ≤ U∗ +
C

V
, (24)

where U∗ is the optimal value of P1. Supposed there are ε > 0
and U(ε) which satisfy the Slater conditions [8], then the sum

of time-averaged queue length of the task buffers of mobile

device and MEC server satisfies

lim sup
T→∞

1

T

T−1∑
t=0

E{Q(t)+R(t)} ≤ C + V (U(ε)− U∗)
ε

. (25)

Proof: The proof is omitted due to space limitation.

Remark 1: According to Little’s Law [12], the execution

delay is proportional to the time-averaged queue length of

the task buffers. Thus Theorem 1 shows that there exists an

[O(1/V ), O(V )] tradeoff between the time-averaged system

cost and the sum of time-averaged queue length of task buffers

of the mobile device and MEC server. When the proposed

online algorithm is adopted, the time-averaged system cost

decreases inversely proportional to V , while the sum of time-

averaged queue length of task buffers of mobile device and

MEC server increases with V . Therefore, we can adjust V to

balance these two metrics.

V. SIMULATION RESULTS

In this section, we use simulations to validate the theoretical

analysis and evaluate the effects of the system parameter. In

the simulation, we assume the distance between mobile device

and MEC server is 50 meters away. The channel power gains

h(t) are exponentially distributed with mean g0(d0/d)
4, where

g0 = −40 dB and d0 = 1 m [13]. In addition, we set κ =
κser = 10−27, α = 2.44 × 10−4 $/J [11], δ = 0.5 × 10−10

$/bit, τ = 1 ms, ω = 1 MHz, σ = 10−13 W, pmax = 1 W,

fmax = 1.5 GHz, λ = 737.5 cycles per byte, Amax = 1000
bits. The simulation results are averaged over 10000 time slots.

First, we show the tradeoff between the time-averaged

system cost and the sum of time-averaged queue length of

task buffers of the mobile device and MEC server in Fig. 2.

As can be seen, the blue curve in Fig. 2 depicts the relationship

between the average system cost and the parameter V , it shows

that the system cost decrease as V increase and converges to

U∗ when V is sufficiently large. And the sum of time-averaged
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queue length of task buffers of the mobile device and MEC

server are increasing as V increase as shown in Fig. 2. Thus,

it can be known that the balance between the time-averaged

system cost and the sum of time-averaged queue length of task

buffers of the mobile device and MEC server can be achieved

by adjusting the parameter V .

Next, we show the stability of the queue length of task

buffers of the MEC system, as shown in Fig. 3. As can be seen,

for all three cases, the queue length of the system increases

at the beginning, and stabilizes around 3.7 × 104 bits, 1.2 ×
105 bits, 2.8× 105 bits respectively. Thus it demonstrates the

stability of the MEC system. In addition, it also shows that the

queue length of the system increases as the input data increase.

Last, we compare our proposed algorithm with Local-

only and MEC-only algorithms to show the performance of

our proposed algorithm. In Local-only, the computation tasks

only executed in the mobile device by the maximum CPU

frequency, and in MEC-only, the input data of the computation

tasks will be transferred to the MEC server with the maximum

transmit power and then executed in the MEC server by the

maximum CPU frequency. As shown in Fig. 4, the system

cost increases with the price that is energy-monetary transform

parameter, i.e., α. Similarly, as can be seen in Fig. 5, the

system cost increases with the price that means the MEC

system rents radio bandwidth from network operators, i.e., δ.

It is noted that the Local-only algorithm is not affected by the

parameter δ since it does not need to use the radio bandwidth.

VI. CONCLUSIONS

In this paper, we investigated the problem of the monetary

cost minimization in mobile-edge computing (MEC) system in

a cooperative scenario. Then we proposed an online dynamic

computation offloading algorithm that correctly decides the

local execution and computation offloading policy. Simulation

results verify the theoretical analysis, and show that the

proposed algorithm can balance the system cost and the queue

length of the system.
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