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Abstract—Spoof Surface Plasmon Polariton (SSPP)
transmission line is a novel type of surface wave structure in
microwave and terahertz frequency range. For limited
electromagnetic field between corrugated metal and dielectric,
SSPP transmission lines and components have the advantages
of wideband adjustment, miniaturization and high integration.
In this paper, the influence of several geometric parameters on
the dispersion curves of the oral-ring SSPP unit is analyzed.
And then, the attenuation constant of the oval-ring
transmission line is calculated. Finally, the SSPP splitters with
oval-ring unit cell are reviewed.
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I. INTRODUCTION

Surface plasmon is a vital optical phenomenon. When
the light in the free space illuminates the metal surface,
oscillations between the free electrons in the metal and the
incident wave are observed [1]. The electromagnetic field is
confined to the surface between the free space and metal.
And the electromagnetic field is exponentially attenuated in
the vertical direction to the interface. However, when the
metal exhibits a perfect electrical conductor (PEC) at
microwave and terahertz frequencies, the Surface Plasmon
phenomenon disappears. In order to realize the
electromagnetic wave of Surface Plasmon mode in the low
frequency band, a metal structure of periodic grooves is
proposed [2]. On the surface of the artificially modified
metal and dielectric, the electromagnetic fields mode is
similar to the Surface Plasmon mode in optics, which is
known as Spoof Surface Plasmon (SSP). SSP has the
characteristic of capturing electromagnetic fields in the sub-
wavelength range, which provides a way to design
miniaturized circuits such as detectors [3], enhanced
absorption [4] enhanced coupler [5], surface-enhanced
spectroscopy [6] and so on.

SSP can be divided into two types. One is localized Spoof
Surface Plasmon [7]. And the other is Spoof Surface
Plasmon Polariton (SSPP) for the ability to propagate at the
interface between metal and dielectric [8].  For this
performance, SSPP transmission lines can be fabricated.

With the development of communication technologies,
miniaturization, high integration, and ultra-wideband
requirements of radio frequency (RF) devices have been
proposed. SSPP transmission lines and components have
recently been extensively studied due to their unique
advantages. The SSPP transmission line has an ultra-
wideband. And the cutoff frequency is freely controlled by
the corrugation geometric parameters [9]. In addition, the
SSPP electromagnetic field is tightly concentrated in the
corrugation. Therefore, SSPP components can be fabricated
in sub-wavelength ranges to achieve miniaturization of
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electronic components and circuits [10]. At the same time,
the crosstalk between SSPP transmission lines is smaller than
that of conventional transmission lines [11]. Moreover,
single-layer SSPP transmission lines and components can be
bent without significant electrical characteristic changes [12].

The SSPP transmission lines composed of differently
shaped units and related RF microwave components are
designed such as SSPP antennas [13], [14], SSPP filters [15],
[16], SSPP amplifiers [17], [18], etc. However, the
electromagnetic wave of the SSPP mode is very different
from the electromagnetic waves propagated on conventional
microwave waveguides, such as microstrips and coplanar
waveguides (CPW). It is desirable to design the conversion
structures to enable interconnection between SSPP
waveguides and conventional microwave waveguides [19]-
[20]. In addition, electrically adjustable SSPP components
have been designed to meet the needs of communication
systems [21].

This article focuses on our work on SSPP transmission
lines and power dividers. First of all, the performance of the
SSPP oval-ring unit cell is further analyzed. And then, the
SSPP transmission line with oval-ring cells are introduced.
Finally, two kinds of SSPP splitters with oval-ring cells are
overviewed.

II. SSPP UNIT CELLS

The structure supporting SSPP wave propagation consists
of metal cells with small holes. As is shown in Fig. 1, SSPP
units with different shapes are designed for use in various
situations. The metal structure of the rectangular grooves in
Fig. 1(a) is a typical SSPP unit with extensive research [22].
Our work is based on oval-ring SSPP units in Fig.1 (b).

The oval-ring SSPP unit is composed of metallic copper
on a dielectric plate with a dielectric constant of 2.55. And
the dielectric loss angle of the substrate is 0.0029. Moreover,
the dispersion curves are calculated by CST Microwave
Eigenmode, which is explained in [23]. The effect of the
oval-ring SSPP parameters on the dispersion curve is
displayed in Fig. 2.
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Fig. 1 The geometrical shapes of the SSPP unit cells. (a) SSPP unit with
rectangle groove. (b) oval-ring SSPP unit. rx = 1.2, ry =52, p = 2.1, dy
=0.4 (all in mm).



In Fig. 2, the dispersion curves of oval-ring SSPP cells
gradually move away from the dispersion curves of the light
as the frequency increases. The wave vectors of oval-ring
SSPP cells are much larger than that of the light and the
cutoff frequency occurs when kp/xt is equal to 1. In design,
the parameter 7y mainly controls the cutoff frequency, while
rx and dy have less effect on the cutoff frequency. Therefore,
the passband can be tunable by virtue of 7y in the adjustable
range.
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Fig. 2 Dispersion graphs of the proposed oval-ring SSPP units. (a)
Influence of the length of the long axis on the dispersion curves. (b) The
effect of the line width on the dispersion curve. (c¢) The effect of ellipse
short axis radius on dispersion curve.

III. SSPP TRANSMISSION LINE

Transmission line is an important interconnect device.
SSPP transmission line is the basis for SSPP components
and circuits. However, transition section is necessary to
complete impedance matching and electromagnetic field
matching. The classic conversion structure is a flaring
disappearing ground and gradient grooves structure between
SSPP waveguides and CPWs [24]. At the same cutoff
frequency, the oval-ring SSPP transmission line is smaller
than the rectangular one. In designed oval-ring SSPP
waveguide and conversion sections are displayed in Fig.3
(a). In Fig. 3 (b), the simulated and measured results verified
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(a) (b)
Fig. 3 (a) The oval-ring SSPP waveguide and conversion structures. (b) The
simulated and measured S-parameters.

Fig. 4 shows the electromagnetic field distributions of
oval-ring SSPP waveguides. Fig. 4 (a) show the amplitude
of the electric field distributed on the x-y plane. The electric
field is mainly concentrated in the oval-ring center. In
addition, Fig. 4 (b) show the amplitude of the magnetic field.
The magnetic field is mainly distributed on the long axis
side of the oval-ring units, and the magnetic field
distribution on the centerline of the SSPP waveguide is the
weakest.
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Fig. 4 The electromagnetic field distribution of the proposed oval-ring
SSPP unit. (a) Electric field distribution. (b) Amplitude distribution of
magnetic field at 8 GHz.

IV. SSPP SPLITTER

The splitter/combiner is an important component in multi-
channel SSPP circuits and systems. The SSPP
splitters/combiners can be connected to SSPP components
and circuits such as array antennas and phase shifts due to
the ability to synthesize and separate signals.

Many SSPP splitters with different unit cells have been
designed to successfully split the electromagnetic waves of
the SSPP mode into two equal paths [23]. Moreover, an
unequal power divider was proposed in [25]. However, there



are few studies on the isolation characteristics of SSPP
splitters [26], [27].
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Fig.5 The geometrical structure of the designed SSPP power divider with
isolation resistor in fourth oval ring.
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Fig. 6 S-parameters of the proposed oval-ring SSPP power divider with and

without 200 Q resistance.

Fig. 5 depicts that the designed oval-ring SSPP power
divider [26], based on the classical Wilkinson power divider
model. But, the SSPP transmission line is a non-uniform
transmission line composed of periodic cells, and the
placement of the isolation resistor is limited. In order to place
the isolation resistor at a quarter wavelength of the SSPP
transmission lines, this designed power divider separates the
SSPP waveguides at the conversion structure which
connected to port 1. Because the gradient-sized elliptical ring
provides more length options.

In Fig.6, simulation and measurement results indict that
the SSPP power divider enables equal power distribution of
the two output ports, and the isolation resistor improves |Sz|
and |[S33] bellow -10 dB and the |S3| bellow -20dB in
frequency band.
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Fig. 7 Structure of four-way SSPP splitter.

In order to further increase the signal paths, multiple-way
SSPP splitters are proposed in [28], [29]. In our previous
work [28], a radial four-way SSPP splitter is designed in
Figure 7. Based on the design of two-way SSPP splitter, two
new SSPP transmission lines are connected to the two
ground lines of the CPW. As shown in Fig. 8, the simulation
and measurement results indicate that the four-way SSPP
splitter realizes the function of equally dividing the signal
into four channels.
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Fig. 8 Measured and simulated S-parameters of the four-way SSPP splitter.

V. CONCLUSION

In this paper, oval-ring SSPP transmission line and
splitters have been reviewed. The SSPP splitter requires
further analysis by impedance analysis. In addition, the
isolation resistor design of the multi-channel power divider
also needs to be researched. Multi-channel SSPP
splitters/combiners will play an important role in the
development of SSPP circuits and systems.
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