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Abstract— High-isolation in-band full-duplex (IBFD)
cavity-backed slot antennas (CBSAs) in a single resonant
cavity are presented in this article. The TE101 and TE011 cavity
modes combined with a modified orthogonal feeding structure
are first used to design the duplex antenna. The proposed feeding
structure can reduce the port-to-port coupling strength and
produce a very high isolation. By replacing the crossed radiation
slots with two pairs of parallel radiation slots, enhanced
radiation gain is achieved. To tackle the narrow bandwidth for
the single-mode operation, two orthogonal resonant-iris modes
produced by the two feeding slots are introduced to design a
dual-mode wideband IBFD antenna. The simulated bandwidth
is increased from 0.8% to 5.7%. All the presented antennas with
improved performances are designed and realized in a single
full-metal resonant cavity. Compared with the conventional
design method, high isolation, enhanced gain, and enhanced
bandwidth are simultaneously achieved without enlarging the
antenna size. Finally, the prototype of the wideband IBFD
slot antenna is measured and presented to validate the design
concept, which has a 5.8% bandwidth, higher than 95% total
efficiency, especially an isolation higher than 72 dB.

Index Terms— Cavity-backed slot antenna (CBSA), enhanced
bandwidth, enhanced gain, full metal, high isolation, in-band
full-duplex (IBFD).
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I. INTRODUCTION

IN-BAND full-duplex(IBFD) systems, also known as
simultaneous transmit and receive (STAR) systems, can

improve the spectral efficiency to resolve the congested fre-
quency spectrum of the modern wireless systems. The main
challenge in the implementation of the IBFD systems is the
high self-interference (SI) cancellation (>100 dB) between
transmitting channels (Tx) and receiving channel (Rx). The
fulfillment of the high SI cancellation can be realized with the
combination of several factors: 1) antenna design; 2) analog
cancellation; and 3) digital cancellation.

In this work, we focus on the design of the IBFD antenna.
High-isolation IBFD antennas have been attracting much
attention as they can degrade the signal from the Tx to Rx
and also alleviate the requirements of analog and digital SI
cancellation. The approaches of designing high-isolation IBFD
antennas include the dual-antenna structure and single-antenna
structure. The first approach is using separate antenna elements
for Tx and Rx channels [1]–[4]. In [1], a spatial duplexing
filter and two separate antennas with orthogonal polarizations
were used to reduce the Tx–Rx coupling. In [2] and [3], two
orthogonal linearly polarized antennas with an auxiliary port
for the decoupling were used to improve the SI cancellation
and achieved an isolation of 40 dB. This approach usually
requires a large physical distance and does not satisfy the
desired form of modern wireless systems. While the IBFD
antennas designed on a single antenna have a compact size
and are much attractive in the IBFD systems, as discussed
in [5], several practical design methods of the orthogonal-
polarized single-antenna IBFD antennas have been reported
in the literature [6]–[14]. In [6] and [7], the horizontal polar-
ization and vertical polarization of a single patch antenna
are used to achieve the high isolation of the IBFD antenna.
Besides, differential feeding of one port [8]–[12] or both two
ports [13], [14] of the patch antennas were introduced to
improve the SI cancellation. In [13], each port is fed with
a 3 dB/180◦ ring coupler to form a double-differential feeding
patch antenna, which can achieve an isolation of 72 dB over
the operating band.

The aforementioned IBFD antennas were designed on
microstrip-line structure, which had a small size and low
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Fig. 1. Proposed duplex CBSA. (a) 3-D view. (b) View of feeding slot 1.
(c) View of feeding slot 2. (d) View of radiation slots.

cost while suffering from low gain and low efficiency.
Cavity-backed slot structure [15]–[22] can tackle these chal-
lenges, and it is a good candidate to design high-gain and
high-efficiency antennas. Especially, the full-metal cavity-
backed slot antennas (CBSAs) [19]–[22] have high-power-
handling capacity and are highly demanded for the long-range
and high-power wireless systems. SIW IBFD CBSA [23], [24]
and full-metal IBFD CBSAs [25], [26] based on orthogonal
polarizations were reported to achieve high gain and high
efficiency. In [24], a double-differential-fed IBFD SIW cavity
slot antenna using TE120 and TE210 modes is reported, which
can obtain a high isolation of 60 dB. In [25], two separate
corporate-feeding networks in different layers of the feeding
network for the two different polarizations were used to feed
the slot antenna and achieved an isolation of 52 dB.

In this article, a class of full-metal IBFD CBSAs with high
isolation are presented. All the antennas are implemented on a
single resonant cavity. Two orthogonal rectangular-waveguide
cavity modes, i.e., TE101 and TE011, combined with a mod-
ified orthogonal feeding structure, are first used to design
the dual-polarized duplex antenna. Then, the detailed analy-
sis of the improved isolation produced by the proposed
arrangement of the feeding structures, as shown in Fig. 1(a),
is presented. This configuration can reduce the port-to-port
coupling strength and obtain a much higher isolation than
the conventional one [19]. Besides, by replacing the two
crossed radiation slots with two pairs of parallel radiation slots,
an enhanced gain is achieved. Furthermore, additional orthog-
onal resonant-iris modes [27] produced by the feeding slots are
combined with the cavity modes to design a dual-mode duplex
antenna with enhanced bandwidth. The operating bandwidth
is increased from 0.8% to 5.7%. All the improvements of
high isolation, enhanced gain, and enhanced bandwidth are
achieved without introducing extra structure, enlarging cavity

Fig. 2. Initial performance of the duplex antenna. Dimensions (unit: mm):
a = b = 66, c = 50, p1 = p2 = 44, q1 = q2 = 30, s1 = s2 = 25,
L1 = L2 = 34, W1 = W2 = 7, L f 1 = L f 2 = 32, W f 1 = W f 2 = 4,
L p1 = L p2 = 16, Dp1 = Dp2 = 6, t1 = t2 = 3, and t3 = 2.

size, or deteriorating other antenna’s performances. Finally, the
enhanced-bandwidth and enhanced-gain IBFD slot antenna is
fabricated and measured. Measurement shows that the antenna
can achieve a 5.8% bandwidth at 3.47 GHz, and the port-to-
port isolation is higher than 72 dB over the operating band.

II. BASIC OPERATING PRINCIPLE

A. Proposed In-Band Full-Duplex Slot Antenna

Fig. 1 shows the physical structure of the proposed duplex
CBSA. It is composed of a resonant cavity with two feeding
slots and a pair of crossed slots, two coaxial-to waveguide
transitions formed by the feeding cavity, and the SMA port
with the extended probe. The coaxial-to-waveguide transitions
are used to excite the cavity modes via the feeding slots. In this
antenna, the two cavity modes, TE101 and TE011, which have
orthogonal electric field distributions, are first used to achieve
the duplex performance.

Feeding slots 1 and 2 are used to excite the cavity modes
TE101 and TE011, respectively, whereas radiation slots 1 and 2
are used to radiate the energy of TE101 and TE011, respec-
tively. The orthogonal field distributions of these two modes
inherently ensure good isolation.

Fig. 2 shows an initial performance of the proposed duplex
antenna. The initial size of the antenna is given in Fig. 2, and
the dimensions related to channels 1 and 2 are set identical
to show the initial performance and to easily carry out the
subsequent analysis. It can be seen that there is a difference
in the operating frequency between these two channels, which
is due to that the feeding structures of them are not exactly
the same, i.e., the positions of the feeding structures with
the reference of the radiation slots. The isolation between the
two channels attains about 58 dB. Thus, the proposed antenna
holds good duplex property as desired.

Here, the adjustment of the resonant frequencies of the two
channels is first presented and analyzed. To deal with this
issue, the equivalent circuit models of the duplex antenna are
provided, as shown in Fig. 3. Each channel is expressed as an
individual circuit model. The cavity modes can be seen as a
parallel LC resonator, and both the feeding slot and radiation
slot produce a shunt capacitive loading on the cavity modes.
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Fig. 3. Equivalent circuit model of the proposed duplex antenna.

Fig. 4. Effect of the lengths of slot 1 and feeding slot 1 on f1 and f2.
(a) and (b) Versus L1. (c) and (d) Versus L f 1. Dimensional unit: mm.

According to Fig. 3, the resonant frequencies of the two
cavity modes under the effect of the loaded slots, i.e., f1 and
f2, are calculated as (1) and (2), respectively. It can be seen
that f1 can be individually adjusted by modifying C f 1 and Cs1,
i.e., by modifying the sizes of the feeding slot 1 and radiation
slot 1 and f2 can be individually adjusted by modifying C f 2

and Cs2, i.e., by modifying the sizes of the feeding slot 2 and
radiation slot 2

f1 = 1

2π
√

Lr1(Cr1 + C f 1 + Cs1)
(1)

f2 = 1

2π
√

Lr2(Cr2 + C f 2 + Cs2)
. (2)

To prove this analysis, Fig. 4 shows the effects of the size
of feeding slot 1 and radiation slot 1 on these two modes of
f1 and f2. Fig. 4(a) shows that the increasing length of the
radiation slot 1, i.e., L1, introduces a decreasing frequency
of f1, as an increasing length of the slot produces an increasing
loading capacitance Cs1. Meanwhile, the increasing L1 does
not affect f2, as radiation slot 1 is parallel to the electric field

Fig. 5. Configurations of (a) conventional and (b) proposed duplex slot
antennas. Feeding cavities and probes are not shown here.

Fig. 6. Coupling topologies of (a) conventional and (b) proposed duplex slot
antennas.

of f2. Fig. 4(c) and (d) shows that an increasing length of
feeding slot 1 also causes a decreasing f1, while it does not
affect f2. Besides, the varying size of the radiation slot has a
larger effect on the resonant frequency than the varying size
of the feeding slot. Similarly, it can be predicted that the slots’
length of radiation slot 2 and feeding slot 2 only affects f2.
Thus, both the frequencies of f1 and f2 can be individually
controlled and can help to design the IBFD antenna.

B. Analysis of Improved Isolation

The isolation mainly depends on the coupling between the
two ports. The high isolation of the proposed duplex antenna
is obtained under a purposed arrangement of the two feeding
structures, which can reduce the coupling between the two
ports. For the comparison, the conventional IBFD antenna with
a different arrangement of the feeding structures is presented.
The configurations of these two duplex antennas are shown
in Fig. 5 for comparative study. Here, only the feeding slots
on behalf of the feeding structures are shown here. From
Fig. 5(a), it can be seen that the electric field Ey produced
by feeding slot 1 transmits toward feeding slot 2 and the
electric field Ex produced by feeding slot 2 transmits toward
feeding slot 1, which means that there are two coupling paths
between the two ports. For the proposed duplex antenna shown
in Fig. 5(b), the electric field Ey produced by feeding slot 1
transmits toward feeding slot 2, however, the electric field Ex

produced by feeding slot 2 is parallel to feeding slot 1 and
thus cannot transmit toward feeding slot 1, which means that
there is only one coupling path between the two ports of the
proposed duplex antenna. The coupling topologies of them
are shown in Fig. 6(a) and (b). Thus, the proposed duplex slot
antenna has a reduced coupling strength and can obtain a high
isolation. The simulated isolation shown in Fig. 7 indicates
that the conventional antenna can only achieve an in-band
isolation of 18 dB, which is much lower than the proposed
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Fig. 7. Simulated isolations of the conventional and proposed duplex slot
antennas.

Fig. 8. Simulated isolations of the conventional and proposed duplex
slot antenna versus the varying widths of the feeding slots. (a) W f 1 for
conventional one. (b) W f 2 for conventional one. (c) W f 1 for the proposed
one. (d) W f 2 for the proposed one. Dimensional unit: mm.

one of 58 dB. According to the previous analysis, it can be
predicted that the isolation of conventional duplex antenna is
affected by the sizes of both feeding slots 1 and 2, whereas the
isolation of the proposed one is mainly affected by the sizes
of feeding slot 2. To prove this, the effect of the widths of
the feeding slots on the isolation of the two duplex antennas
is shown in Fig. 8. Although both the increasing W f 1 and
W f 2 cause a lower isolation of the conventional and proposed
duplex antennas, for the conventional one, W f 1 and W f 2 have
a similar effect on the isolation, whereas for the proposed one,
W f 2 has a much larger effect on the isolation than W f 1. These
results verify the analysis in Figs. 5 and 6.

Even though the TE101 and TE011 modes have orthogo-
nal electric field distributions with self-isolated performance,
the isolation level still needs to be further discussed and
designed. The highly improved isolation of the proposed
IBFD antenna is realized by simply relocating the posi-
tions of the feeding structures without introducing other
enhanced-isolation feeding structures.

Fig. 9. Impedance matching. (a) Versus Dp1 at port 1. (b) Versus Dp2 at
port 2. Dimensional unit: mm.

III. DESIGNS OF NARROWBAND IBFD ANTENNAS

A. Narrowband Antenna

Section II has presented the basic design principle of
the IBFD antenna, including the achievement of the same
operating frequency and the analysis of the improved isolation.
Then, the proposed design concept is used to design the IBFD
slot antenna. We first present a duplex antenna based on the
antenna structure in Fig. 1 with two crossed slots and the
cavity modes TE101 and TE011. Another mainly concerned
performance for a practical antenna is the impedance match-
ing. In fact, all the parameters can be used to achieve the
impedance matching. For instance, Fig. 4 shows that the length
of the feeding slot and radiation slot affects the frequencies as
well as the impedance matching. The feeding slot affects the
input impedance, and the radiation slot affects the radiation
impedance. Therein, the length of the feeding slot has a
little effect on the frequency, but it has a large effect on the
impedance matching. Another main dimension to make the
impedance matching is the distance between the probe and
the feeding slot, i.e., Dp1 and Dp2, as shown in Fig. 1. From
Fig. 9, it can be seen that small distances Dp1 and Dp2 can
achieve a better impedance matching and have a very little
effect on the frequency shift.

Fig. 10 shows the simulated results of the IBFD antenna
with crossed radiation slots shown in Fig. 1. It can be seen
that this antenna operates at 3.54 GHz with a bandwidth of
0.8% (|S11| < −10 dB). The realized gains of ports 1 and 2
are 6.2 and 6.4 dBi, respectively. Their total efficiencies are
about 98%. Besides, the isolation is higher than 67 dB, which
is achieved under the condition that the feeding slots and
radiation slots of both channels are set in a single resonant
cavity. In addition, the performance of the two channels,
except for the isolation, can be individually optimized in such
a configuration.

B. Narrowband Antenna With Enhanced Gain

To improve the radiation gain, the crossed radiation slots
(Called Type-I) are replaced by two pairs of parallel slots
(called Type-II), as shown in Fig. 11. Each channel has two
parallel radiation slots for radiating the energy, which can
consequently improve the radiation gain without enlarging
the aperture size of the resonant cavity. Slot-1a and slot-
1b only affect channel 1, whereas slot-2a and slot-2b only
affect channel 2. Thus, the analysis and design procedures of
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Fig. 10. Simulated results of the IBFD antenna with crossed slots. (a) Reflec-
tion coefficient and realized gain. (b) Isolation and efficiency. Dimensions
(unit: mm): a = 64, b = 66, c = 51, p1 = 43, p2 = 44, q1 = q2 = 30,
s1 = s2 = 25, L1 = 34.2, L2 = 33, W1 = W2 = 8, L f 1 = 34, L f 2 = 36,
W f 1 = 6, W f 2 = 3, L p1 = L p2 = 16, Dp1 = 8, Dp2 = 6, t1 = t2 = 3, and
t3 = 2.

Fig. 11. View of the radiation slots of the duplex antenna with enhanced
gain.

this antenna are similar to those of the antenna with crossed
radiation slots. Here, the main difference between these two
antennas is set as the distance between the parallel slots for
discussion. In this context, the effect of D1 on channel 1 is
taken as an example, as shown in Fig. 12. It can be seen that
a larger distance introduces a lower frequency and a higher
radiation gain.

After the analysis and optimization, the simulated result of
the IBFD antenna with an enhanced gain is shown in Fig. 13.
It can be seen that this antenna operates at 3.52 GHz with a
bandwidth of 0.8% (|S11| < −10 dB), the isolation is higher
than 64 dB, and the total efficiencies are about 98%. Fig. 13(b)

Fig. 12. Effect of D1 on the operating frequency and realized gain of
channel 1. Dimensional unit: mm.

Fig. 13. Simulated results of the IBFD antenna with enhanced gain.
(a) Reflection coefficient, isolation and efficiency. (b) Comparison of realized
gain of Type-I and Type-II antennas. Dimensions (unit: mm): a = 64, b = 66,
c = 50, p1 = 43, p2 = 44, q1 = q2 = 30, s1 = s2 = 25, L1 = 34, L2 = 32.1,
W1 = 5, W2 = 6, D1 = 46, D2 = 48, L f 1 = 34, L f 2 = 36, W f 1 = 6,
W f 2 = 3, L p1 = 15.3, L p2 = 17, Dp1 = 7, Dp2 = 5, t1 = t2 = 3, and
t3 = 2.

shows the comparison in the realized gains between the two
types of antennas. Type-II antenna has 2.4–2.5-dB higher gain
than Type-I antenna, which is about 8.7 and 8.8 dBi of ports 1
and 2, respectively, while their overall sizes are almost the
same.

IV. DESIGN OF WIDEBAND IBFD ANTENNA

The IBFD antennas presented previously show good
performance with high isolation and easy design while
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Fig. 14. Resonant iris. (a) Full view in a cavity. (b) Side view on a metal
wall. (c) Equivalent circuit model.

suffering from narrow operating bandwidth, which causes a
limited application. To obtain a wide operating bandwidth,
the resonant-iris mode [27] is further excited and combined
with the cavity mode to design the wideband IBFD antenna.
The standard physical structure and equivalent circuit model
of the resonant iris are shown in Fig. 14. The resonant iris
is referred to as a slot on a metal wall, and this slotted
wall is embedded into a metal cavity. The resonant iris can
be equivalently regarded as a parallel LC-resonator, and the
resonant frequency is calculated as follows [27]:

firis = v

2

√
(Y 2 − y2)

(x2Y 2 − X2 y2)
. (3)

The configuration of the wideband IBFD antenna with
two pairs of parallel radiation slots is shown in Fig. 15(a).
Here, the feeding slots are used to obtain the resonant-iris
modes, and the views and marked dimensions of them can
be referred to Fig. 1(b) and (c). Based on (3), the resonant
frequencies of these two resonant-iris modes are calculated as
follows:

fs1 = v

2

√√√√ (b2 − W 2
f 1)

(b2 L2
f 1 − a2W 2

f 1)
(4)

fs2 = v

2

√√√√ (a2 − W 2
f 2)

(a2 L2
f 2 − c2W 2

f 2)
. (5)

The feeding slot in the proposed antenna can always pro-
duce a resonant-iris mode. However, in the previous designs,
the resonant-iris mode produced by the feeding slot is not
utilized, and it is purposively moved to higher frequency. This
mode should be moved to lower frequency if it is used to
design the dual-mode wideband antenna. According to (4)
and (5), the lengths of the feeding slots have the largest
effect on the resonant frequency. Thus, by properly increasing
the lengths of the feeding slots, the resonant-iris modes will
be shifted to lower frequency. As shown in Fig. 15(b), two
resonant modes in each channel can be used to form a wide
operating band. To clearly understand the resonant modes,
the electric field distributions at these four frequencies are
shown in Fig. 16. It can be seen that the lower resonant
modes, i.e., f1 and f2, are the TE101 and TE011 modes of
channels 1 and 2, respectively, whereas fs1 and fs2 are the
resonant-iris modes related to feeding slots 1 and 2, respec-
tively. Besides, the high isolation (higher than 63 dB) between
the two channels is almost remained due to the orthogonal

Fig. 15. (a) Configuration of the proposed wideband IBFD antenna with
two pairs of parallel slots. (b) Initial performance of the wideband IBFD
antenna. Dimensions (unit: mm): a = 62, b = 60, c = 46, p1 = p2 = 43,
q1 = q2 = 30, s1 = s2 = 25, L1 = 37, L2 = 38, W1 = W2 = 8, L f 1 = 40,
L f 2 = 42, W f 1 = 2, W f 2 = 5, L p1 = 15, L p2 = 13, Dp1 = 10, Dp2 = 6,
t1 = 5, t2 = 3, and t3 = 3.

Fig. 16. Electric field distributions. (a) TE101 mode, f1. (b) Resonant-iris
mode of feeding slot 1, fs1. (c) TE011 mode, f2. (d) Resonant-iris mode of
feeding slot 2, fs2.

field distributions of both the cavity modes and resonant-iris
modes, and the proposed arrangement of the feeding structure
is shown in Fig. 1.
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Fig. 17. Effect of the sizes of the feeding slots on the cavity modes and
resonant-iris modes. (a) L f 1 on channel 1. (b) W f 1 on channel 1. (c) L f 2 on
channel 2. (b) W f 2 on channel 2. Dimensional unit: mm.

TABLE I

COMPARISON OF THE CALCULATED AND SIMULATED

FREQUENCIES OF RESONANT-IRIS MODES

On the one hand, from (3) to (5), it can be derived
that a longer slot’s length introduces a lower frequency of
resonant-iris mode, whereas a wider slot’s width introduces
a higher frequency of resonant-iris mode. On the other hand,
both longer slot’s length and wider slot’s width introduce a
lower frequency of TE101/TE011 cavity mode, as discussed in
Section II. Thus, the effect of varying width can be used to
justify the resonant-iris mode. To prove this analysis, the effect
of the slots’ sizes on the resonant modes is shown in Fig. 17.
It can be seen that the tendency of the resonant frequencies
of the cavity modes and resonant-iris modes affected by the
slots’ size is kept with the previous analysis. Besides, the
length of the slot has a larger effect on the frequencies than
the width, which is also kept with the derivation from (3)
to (5). The comparison between the simulated and calculated
resonant frequencies of the resonant-iris modes with varying
slots’ sizes is shown in Table I. It can be seen that the error
between the simulated one and the calculated one is less than
2.5%.

Fig. 18. Adjustment of isolation versus W f 2. Dimensional unit: mm.

Fig. 19. Final simulated S-parameters of the wideband IBFD antenna.
Dimensions (unit: mm): a = 62, b = 60, c = 46, p1 = 43, p2 = 44,
q1 = q2 = 30, s1 = s2 = 25, L1 = 38, L2 = 38, W1 = 8, W2 = 8, D1 = 48,
D2 = 48, L f 1 = 43, L f 2 = 43, W f 1 = 2, W f 2 = 3, L p1 = 15.5, L p2 = 14,
Dp1 = 7, Dp2 = 7, t1 = 6, t2 = 5, and t3 = 2.

The isolation of the wideband antenna is similar to that of
the narrowband antenna presented in Sections III-A and III-B.
Here, the main influenced factor, i.e., the width W f 2, is taken
into the analysis, as shown in Fig. 18. It can be seen that a
smaller W f 2 can obtain a higher isolation.

Then, the antenna is designed and optimized with the
simulated results, as shown in Fig. 19. The overlapping
bandwidth with |S11| < −10 dB of the two ports is from
3.383 to 3.578 GHz (195 MHz bandwidth, about 5.7%), and
the isolation is higher than 77 dB over the operating band.
Compared with the conventional design method, high isola-
tion, enhanced gain, and enhanced bandwidth are achieved
without introducing extra structure, enlarging cavity size, and
deteriorating other antenna’s performances.

V. EXPERIMENTAL RESULTS

The proposed wideband full-metal IBFD slot antenna is
in the final fabricated and measured to validate the design
concept. The antenna is fabricated using silver-plated brass
to avoid oxidization and reduce the conductor loss. The
photograph of the fabricated antenna is shown in Fig. 20. The
antenna is fed by the SMA port with extended probe.

The simulated and measured S-parameters are shown
in Fig. 21. The measured overlapping bandwidth is from
3.37 to 3.57 GHz (200 MHz bandwidth, about 5.8%), and
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TABLE II

COMPARISONS WITH THE REPORTED IBFD ANTENNAS

Fig. 20. Photograph of the proposed wideband IBFD slot antenna.

Fig. 21. Measured and simulated S-parameters of the proposed antenna.

the in-band isolation is higher than 72 dB, which is a little
lower than the simulated one of 77 dB. The proposed cavity-
backed IBFD slot antenna has a higher isolation than the

Fig. 22. Measured and simulated results. (a) Realized gain. (b) Total
efficiency.

reported IBFD CBSAs [23]–[26]. The measured realized gains
of the two ports are higher than 8.5 dBi with a peak gain
of 8.8 dBi, whereas the simulated ones are higher than 8.7 dBi
with a peak gain 9 dBi, as shown in Fig. 22(a). The measured
total efficiencies are higher than 94% with a peak efficiency
of 97%, whereas the simulated ones are higher than 97% with
a peak efficiency of 99%, as shown in Fig. 22(b). The radiation
patterns shown in Fig. 23 indicate that the measured coplanar
polarizations (co-pol) of the two ports are almost the same as
the simulated ones. Besides, the measured cross-polarizations
(X-pol) of the two ports at XZ plane are better than 30 dB,
whereas the X-pols are better than 23 dB at YZ plane.

The comparison with other reported IBFD antennas is
shown in Table II. It can be seen that the proposed antenna
has the highest isolation, especially compared with the IBFD
CBSA. The work [13] has the same isolation, while two
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Fig. 23. Measured and simulated radiation patterns at 3.5 GHz. (a) Port 1
at XZ plane. (b) Port 1 at YZ plane. (c) Port 2 at XZ plane. (d) Port 2 at
YZ plane.

extra 3 dB/180◦ couplers were used to feed the patch antenna
to obtain a high isolation. Besides, the proposed antenna also
owns the merits of high total efficiency and high aperture
efficiency. In addition, the full-metal structure brings out a
high-power-handling capacity.

VI. CONCLUSION

High-isolation IBFD CBSAs in a single-metal resonant
cavity are presented in this article. The proposed arrangement
of the feeding structures can obtain a much higher isolation
than conventional one. An enhanced gain is obtained by
replacing the crossed slots with two pairs of parallel slots.
Besides, the resonant-iris modes produced by the feeding slots
are combined with the cavity modes to obtain an enhanced
operating bandwidth. The achievements of the improved iso-
lation, enhanced gain, and enhanced bandwidth are obtained
without introducing any other antenna structure. The final
measured prototype shows that the proposed full-metal IBFD
CBSA has a 5.8% bandwidth, a 95% total efficiency, and an
80% aperture efficiency for both two channels. Especially, the
isolation between the two channels is higher than 72 dB over
the operating band.
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