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Abstract—In millimeter-wave (mmW) and terahertz (THz)
applications, the transmission behavior along circuit structures
and components, such as radiation and leakage losses, is critical
for their overall performances. It is imperative to develop low-loss
interconnect and transmission techniques that should be used for
the construction of building circuit blocks and elements. In this
work, a hybrid metallo-dielectric (MD) waveguide architecture
is proposed and studied for the first time. The scheme is made
of mixed substrate-integrated dielectric waveguide (SIDW) and
substrate-integrated nonradiative dielectric (SINRD) waveguide,
which are deployed for the design of specific building parts
in consideration of respective transmission properties of the
two waveguides. A back-to-back WR3-band prototype based on
this hybrid scheme is investigated theoretically and validated
experimentally. The hybrid MD waveguide architecture with
SINRD is found to outperform the hybrid MD waveguide
architecture with substrate-integrated waveguide (SIW) in terms
of transmission performance and manufacturing complexity
because of the advantageous features of metallized-via-free
structure. The presented hybrid MD waveguide architecture
shows its potential for developing low-loss highly integrated
mmW and THz circuits and systems.

Index Terms— Hybrid metallo-dielectric (MD) waveguide, mil-
limeter wave (mmW), substrate-integrated dielectric waveguide
(SIDW), substrate-integrated nonradiative dielectric (SINRD)
waveguide, terahertz (THz).

I. INTRODUCTION

IELECTRIC waveguide (DW) has been well known for
its great potential for the development of RF/wireless
communications and sensing systems due to its attractive
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loss properties free from conductors when operating over
millimeter-wave (mmW) and terahertz (THz) bands [1]. Solid-
core DW structures [2], [3], [4], [5], [6], [7], which demand
for a simpler manufacturing process, are good candidates for
integrated circuits and systems. Ultralow-loss transmission
can basically be achieved by deploying low-loss dielectric
materials. Furthermore, the overall transmission loss can be
reduced by optimizing the geometry and dimension of a
DW cross-sectional profile. In [8], [9], and [10], a dielectric
ribbon waveguide with polymer coating was developed.
In [11], substrate-integrated DW (SIDW) was studied and
characterized, which resembles substrate-integrated image
guide (SIIG) [12] without a metallic grounding. The SIDW
geometry is self-supported by its bilateral air-hole perforated
region. The SIDW is still subject to a potential leakage such
as other DW structures, which stems from any transmission
discontinuities due to its open geometric nature.

In understanding the detrimental nature of waveguide
discontinuities, one may adopt smoothing transmission
topologies, which is one straightforward way to reduce the
effects of discontinuities, thus mitigating inherent radiation
leakage losses. When space is limited, smooth transitions
or discontinuities are impractical. Shielded waveguides, such
as substrate-integrated waveguide (SIW), can be used jointly
with discontinuities. Such a hybrid architecture, schematically
shown in Fig. 1(a), can yield a compact structure. Metallized
via fences can suppress some undesired modes and improve
the transmission performance, but at the expense of increased
topological complexity and metallic loss. On the other hand,
a DW surrounded by a lower permittivity cladding is known
to suffer less loss in the bend region [13].

Nonradiative dielectric (NRD) waveguide [14], [15],
[16], [17] provides an alternative solution for the above-
described leakage problem in connection with DW geome-
tries. More recently, a substrate-integrated NRD (SINRD)
waveguide based on a synthesis of the original nonplanar
topology in planar form emerges as an interesting alterna-
tive [18], [19], [20], [21], which can be realized by using
a planar circuit board (PCB) technology and other planar
processing techniques. The SINRD waveguide is promising for
mmW and THz integrated systems due to its high tolerance
and resilience to sharp discontinuities as well as its resulting
planar geometric structure.
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Fig. 1. (a) Existing hybrid waveguide architecture consisting of SIDW and
SIW. (b) Scheme of the proposed hybrid waveguide architecture consisting
SIDW and SINRD waveguide.

However, the total loss of an SINRD waveguide is generally
higher than that of its SIDW counterpart because of its metallic
coatings or plates involved in its formation and more confined
field pattern within the lossy dielectric material. SINRD-based
architecture generally suffers from a relatively high conductor
loss. Interestingly, it can be anticipated that a straightforward
solution of hybrid waveguides in Fig. 1(b) should be attractive,
which is set to combine the merits of each of those waveguides
in a waveguide architecture [22]. This hybridization presents a
reasonable compromise of transmission loss and circuit design
through blending those DW variants altogether.

The key of the hybrid waveguide architecture is an effective
transmission over the interface between SIDW and SINRD
in Fig. 1(b). In this work, the feasibility of the proposed
hybrid waveguide architecture is validated by studying the
mode compatibility between the Ey, mode of SIDW and the
nonradiative LSM; mode of SINRD waveguide. Then, this
work devises and presents a straight back-to-back substrate-
integrated hybrid metallo-dielectric (SIHMD) waveguide
architecture composed of SIDW and SINRD waveguides.

II. FEASIBILITY OF SUBSTRATE-INTEGRATED
HYBRID MD WAVEGUIDE

A. SIDW and SINRD Waveguide

A general SIDW topology is shown in Fig. 2(a).
By metallizing the substrate surface as shown in Fig. 2(b), one
can have an SINRD waveguide within a certain bandwidth.
In this work, alumina substrate with relative permittivity of
9.8 and thickness of 7 = 0.254 mm is used for WR3-band
demonstration. Its cross section should be appropriately
considered and designed to confine the guided electromagnetic
fields. The width of the guiding channel is initially set
to w = 0.3 mm. Air-hole perforation is applied over the
bilateral section next to the guiding channel to reduce the
dielectric permittivity of the hosting substrate. Even though it
resembles a photonic bandgap structure [23], [24], their nature
of operation is completely different. In this work, equivalent
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Fig. 2. Structures of (a) SIDW and (b) SINRD waveguide. Equivalent models
of (c) SIDW and (d) SINRD waveguide. Simulated transverse electric field
patterns of (e) E7; mode and (f) LSMg; mode.

models in Fig. 2(c) and (d) are used to characterize the SIDW
and SINRD waveguide. In this way, the SIDW and SINRD are
simplified as a composite guide consisting of an unperforated
dielectric guiding channel of rectangular cross section and its
surrounding materials with an air-perforation-induced lower
equivalent homogeneous or effective permittivity. According
to [1] and [14], the dispersion curves of SIDW and SINRD can
be obtained. As shown in Fig. 3, both the SIDW and SINRD
waveguides of interest are set to work in the WR3-band.
The SIDW supports the fundamental Ei, and Ej, modes,
whereas the SINRD supports the nonradiative LSEj}, and
LSMj, modes.

B. Substrate-Integrated Hybrid MD Waveguide

The feasibility of a hybrid waveguide architecture consisting
of both waveguides can be evaluated in a straightforward
manner. As discussed in [1], while cascading two different
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Fig. 3. Dispersion curves of (a) SIDW and (b) SINRD waveguide.
Parameters: 7 = 0.254 mm, w = 0.3 mm, &,1 = 9.8, and ¢,, = 3.

types of waveguides to achieve efficient power coupling
and signal transmission, three conditions should generally be
satisfied, namely, field matching, phase velocity matching, and
impedance matching.

According to field equations (1) and (2) in the Appendix,
one can figure out that the E{;, mode of SIDW and the
LSMg, mode of SINRD waveguide have similar transverse
electric field patterns, as shown in Fig. 2(e) and (f). The phase
velocities of the E}; mode and the LSMj, mode are plotted
in Fig. 4(a), showing a good matching condition. According
to (3) in the Appendix, the wave impedances of those two
modes are also plotted in Fig. 4(b). In this case, they are
found to converge toward each other as frequency increases,
which indicates the possibility of a good impedance matching
between the two waveguides.

The structure of the SIHMD waveguide architecture is
shown in Fig. 5(a). The SIDW is directly connected to
an SINRD waveguide without resorting to any geometrical
adjustment and compensation. The simulated result is given
in Fig. 5(b). As indicated, power or signal can be effectively
coupled from the SIDW to the SINRD waveguide. The
operating band starts from 260 GHz with a maximum
loss of 0.3 dB. The bandwidth of the SIHMD waveguide
architecture is mainly decided by that of the SINRD
waveguide. As suggested in Fig. 3(b), the cutoff frequency of
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Fig. 4. (a) Phase velocities of SIDW and SINRD waveguide. (b) Wave

impedances of SIDW and SINRD waveguide.

the LSMj; mode of the given SINRD waveguide is 230 GHz.
The upper end of the SINRD waveguide is determined by
the cutoff frequency of the first higher order parallel-plate
waveguide (PPW) mode of the dielectric-loaded PPW. For
the given SINRD waveguide, the first higher order PPW
mode propagating in region #2 with ¢, = 3 appears at
340 GHz [25]. Theoretically, the appearance of the higher
order PPW mode can be moved backward by decreasing the
effective permittivity of region #2. However, decreasing ¢,, by
increasing the density of air holes would adversely fragilize
the structure.

The average insertion loss of the proposed SIHMD waveg-
uide architecture, mainly caused by impedance mismatch,
is about 0.15 dB over the bandwidth from 260 to 330 GHz.
Both the phase velocity and the wave impedance of the Ef,
mode converge with those of the LSMg; mode as frequency
increases, which results in a better impedance match. The field
distribution of the SIHMD waveguide architecture is plotted
in Fig. 5(c) and (d).

ITII. BACK-TO-BACK SIHMD WAVEGUIDE

A. Proposed SIHMD Waveguide Architecture Consisting of
SIDW and SINRD

A back-to-back SIHMD waveguide architecture consisting
of SIDW and SINRD for the WR3-band is demonstrated. Its
layout is sketched in Fig. 6(a). An alumina substrate with a
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Fig. 5. (a) Equivalent model of SIHMD waveguide. (b) Transmissions
and reflections of SIDW, SINRD, and SIHMD structures. (c) Electric field
distributions of STHMD waveguide architecture at the xoz plane. (d) Ej,
mode at AA’ (left) and LSM;, mode at BB’ (right). Parameters:
h=0.254 mm, w = 0.3 mm, &1 = 9.8, and ¢, = 3.

thickness of 7 = 0.254 mm is used to develop the SIHMD
waveguide architecture prototype with a length of / = 10 mm
and a width of w = 0.3 mm. In this work, a fabricated
prototype with the SINRD waveguide length of [, = 1.75 mm
is demonstrated and experimentally verified.

The periodicity of air hole perforation p = 0.15 mm
considered here is smaller than the operating guided
wavelength to avoid the electromagnetic band gap in the
band of interest. The diameter of the air hole is set as
d = 0.125 mm. The wall thickness between two adjacent air

3961

'y
A

(@)

(b)

Fig. 6. (a) Layout of the proposed back-to-back SIHMD waveguide
architecture. (b) Metallic housing used to support the waveguide under testing.
Parameters: [ = 10 mm, w = 0.3 mm, /, = 3.5 mm, and /, = 1.75 mm. More
details can be found in Table I.

holes is a = g = 0.025 mm, reaching the manufacturing
limit of our laser drilling system in the Poly-Grames
Research Center. Approximate values of the permittivity of
the given perforated substrate are around &,y = &9, =
3.2 for the horizontal polarization and ¢,,, = 4.25 for the
vertical polarization by using the characteristic equations
formulated and examined in [26]. The same air-hole
perforation pattern is used throughout the SIHMD waveguide
architecture.

The loss tangent of the alumina substrate is about tan
6 = 0.001 in simulation. The conductivity of the gold
metallic coatings is set to 0 = 4.1 x 107 S/m in our HFSS
simulations without considering potential surface roughness.
A metallic housing is required for the measurement of the
SIHMD waveguide, as shown in Fig. 6(b). To maintain the
field pattern of the SIDW, the metal is removed underneath
and above the SIDW sections. The substrate is bilaterally
extended and suspended within the metallic housing. The
SIHMD waveguide is tapered with a length of [, = 3.5 mm
at both ends for impedance matching between the air-
filled standard rectangular waveguide and the SIDW. The
standard WR3-band rectangular waveguides (0.8636 mm x
0.4318 mm) are rotated to excite the horizontally polar-
ized modes. The electromagnetic wave can successfully
propagate through the SIDW-SINRD-SIDW architecture
in Fig. 7.

The fabricated prototype of the demonstrated SIHMD
waveguide architecture is shown in Fig. 8. Air-hole perforation
was performed by laser micromachining. The taper length is
[, = 3.35 mm, a value smaller than the designed counterpart
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TABLE I
PARAMETERS OF DEMONSTRATED SIHMD WAVEGUIDE ARCHITECTURE
Symbol Description Quantity
w width of guiding core 0.3 mm
h thickness of hosting substrate 0.254 mm
d diameter of air hole 0.125 mm
alg thickness of wall between adjacent 0.025 mm
holes
relative permittivity of the hosting
& 9.8
substrate
. effective relative permittivity in 3
2 region #2 used in equivalent models
! total length of the demonstrated 10 mm
SIHMD
A length of the taper for matching 3.5 mm
Iy length of SINRD waveguide 1.75 mm
o conductivity of gold in simulation 4.1x10” S/m
tan & loss tangent of alumina in simulation 0.001

The dimension of WR3-band rectangular waveguide used in simulation is
0.8636 mmx0.4318 mm.

-J\d#bdu-f ;
Tl g R -lu-u-u-
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Fig. 7. Simulated electric field distributions of the proposed back-to-back
SIHMD waveguide architecture at 280 GHz. (a) Top view, (b) side view,
(c) cross section of SIDW, Ef, mode, and (d) cross section of SINRD
waveguide, LSMg; mode.

Fig. 8. Photograph of the presented back-to-back SIHMD waveguide
architecture under microscope.

since the tip has been burned during the manufacturing
process. The metallic coatings were obtained by standard
lithography before the air-hole perforation to avoid unwanted
metal deposition into air holes.

S-parameters were measured using a PNA-X with VDI
frequency extenders. Thru-reflect-line calibration was per-
formed up to the edges of the metallic support. Fig. 9 shows
the comparison between the measured results (solid lines)
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Fig. 9. Simulated and measured results of the presented back-to-back SIHMD
waveguide architecture.
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Fig. 10. Simulated electric field distributions of the traditional back-to-back
SIHMD waveguide architecture (SIDW and SIW) at 280 GHz. (a) Top view,
(b) side view, (c) cross section of the SIDW, E lv | mode, and (d) cross section
of the SIW waveguide, TEj, mode.

and full-wave simulation results (dashed lines). The average
insertion loss is around 2.4 dB, which shows a good agreement
with the simulated result (2.2 dB).

B. Comparison With SIHMD Waveguide Architecture
Consisting of SIDW and SIW

As mentioned earlier, the traditional SIHMD waveguide
architecture consists of SIW, which is also capable of confining
electromagnetic waves at discontinuities. A comparison
between the two SIHMD waveguide architectures is given
here. The length of the SIW is selected to be the same
as the SINRD waveguide in the proposed SIHMD scheme.
No transition is added between two involved waveguides for
each hybrid waveguide architecture. The coupling efficiency
between the SIDW and SIW can be guaranteed because of
the mode compatibility between the Ej,/E{, mode and the
TE],/TE§, mode if the SIW has two continuous metallized
walls. For the given SIDW-SIW-SIDW in Fig. 10, the
operating mode is the E;,; mode in SIDW and the TE], mode
in SIW with two rows of metallized via holes. Simulated
electric field distribution is carried out by using of HFSS
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Fig. 11. Comparison between the measured S-parameters of two SIHMD

waveguide architectures.

package. Obviously, the electromagnetic wave can successfully
propagate through the SIDW-SIW-SIDW architecture. Metallic
housing similar to that in Fig. 6(b) but with differently oriented
transitions is fabricated to measure the back-to-back SIDW-
SIW-SIDW architecture. The measured results are plotted
in Fig. 11.

The transmission coefficient of the proposed SIHMD
waveguide architecture is 1 dB better on average. Comparing
the SIHMD of SIDW and SIW, where the manufacturing
process of metallized via holes could introduce more fabrica-
tion complexity, the presented SIHMD of SIDW and SINRD
is preferred with its superior performance. Note that the
mode operating in SIDW of the proposed SIHMD waveguide
architecture is the Ey, mode to ensure that the excited mode
in SINRD is the nonradiative LSMj, mode. Otherwise, the
Ej, mode in SIDW could excite the TEj, mode of the
SINRD, which actually works as an H-guide [27], [28]. Again,
additional measures are required to confine electromagnetic
waves over the discontinuities since H-guide does not have
this feature, leading to design complexity.

IV.

A parametric study based on HFSS simulations is given
in this section to examine the influence of geometrical
and substrate parameters on transmission properties of the
proposed waveguide architecture. The SINRD waveguide and
the SIDW are set to share the same width, which simplifies
our analysis. The equivalent model used in this investigation
is shown in Fig. 12(a).

DISCUSSION

A. Core Width

The frequency response of the STHMD waveguide architec-
ture with different waveguide widths is shown in Fig. 12(b).
The operating band is downshifted after increasing the waveg-
uide width. Also, the transmission coefficient increases with
increasing waveguide width, as shown in Fig. 12(c), however,
at the expense of a narrower bandwidth, as shown in Fig. 13(a).

B. Effective Permittivity of Perforated Region

In consideration of the structural feasibility of SINRD
waveguide, the diameter of air holes has been reduced to
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Fig. 12. (a) Equivalent model of the proposed back-to-back SIHMD

waveguide architecture. (b) Transmissions and reflections of the back-to-back
SIHMD waveguide architecture with different SINRD widths. (c¢) Transmis-
sion of the back-to-back SIHMD waveguide architecture with different widths
at 330 GHz. Parameters: 7 = 0.254 mm, w = 0.3 mm, /, = 0.254 mm,
&1 =98, and ¢,2 = 3.

0.1 mm during fabrication, leading to a value of ¢,, larger than
the expected one. Increasing ¢,, will push the related higher
order PPW TE; mode into the band of interest, leading to a
narrow nonradiative bandwidth. In practical applications, the
bandwidth of LSMj, mode is terminated by either the higher
order LSE}, mode or the PPW mode, whichever appears first.
As shown in Fig. 13(b), ¢,, hardly affects the bandwidth of
the LSM;, mode.

C. SINRD Waveguide

It is necessary to point out the effect of SINRD waveguide
parameters, namely, the length and the roughness in our case,
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Fig. 13. (a) Width effect and (b) ¢,2 effect on frequency response.

on the performance of the hybrid waveguide architecture.
As shown in Fig. 14(a), the length of the SINRD waveguide
section hardly affects the transmission performance as long as
the material losses are excluded.

One needs to carefully decide the extent of the SINRD
waveguide section since it could affect the overall loss
performance of the proposed SIHMD waveguide architecture.
The loss performance of both waveguides with the same
dimensions and materials is analytically calculated based on
their field distributions [1], [14] and the datasheet of given
materials. It suggests that the SINRD waveguide has a higher
loss (in turn SIHMD waveguide architecture), as shown in
Fig. 14(b). First, the SINRD waveguide is not a conductor-
loss-free structure because of the finite conductivity of metallic
coatings. In addition, the SINRD waveguide typically has a
higher dielectric loss because its field is more concentrated
within the lossy dielectric core. As shown in Fig. 2(e) and (f),
the field extends slightly to region #3 for the SIDW, whereas
the field is completely confined between the two metallic
coatings for the SINRD waveguide. Therefore, one should
balance the system performance for specific scenarios. For
example, while the space is not limited, smooth transition
is allowed and SIDW is preferred. While discontinuities
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Fig. 14. (a) Transmissions and reflection of STHMD waveguide architectures
with different SINRD lengths (w = 0.3 mm). (b) Loss comparison between
the SIDW and the SINRD waveguide. (c) Conductivity effect on the conductor
loss of SINRD waveguide.

are densely distributed, involving SINRD waveguide can
dramatically reduce the propagation path and, thus, the
associated transmission loss.

Next, the conductivity effect is examined on the trans-
mission performance of SINRD waveguide. According to
Fig. 14(c), reducing the conductivity slightly reduces the
conductor loss. This phenomenon can be explained as follows.
The dominant electric field component of the LSMg, mode is
parallel to the two parallel metal coatings and is essentially
close to zero near the metal coatings because of boundary
conditions. Therefore, the transmission performance of the
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SINRD waveguide is not that sensitive to surface roughness
while operating in the LSMg, mode.

V. CONCLUSION

This work presents a hybrid waveguide architecture
consisting of the SIDW and the SINRD waveguide, namely,
the SIHMD waveguide architecture. The presented STHMD
waveguide architecture has been analyzed by full-wave
simulations and experimentally verified in the WR3-band.
The simulated average insertion loss is 2.2 dB for a back-
to-back experimental prototype involving material losses,
feeding loss, and reflection loss. The loss caused by
the two interfaces between the SIDW and the SINRD
waveguide is average 0.3 dB in total, as observed from the
simulated transmission coefficient of the back-to-back SIHMD
waveguide architecture. The proposed scheme shows a great
potential in future mmW and THz applications.

APPENDIX

The dominant transverse field of the E7, mode of SIDW is
given by

2_p2 ;
Al(kjlw%ll) cos(B1x) sin(By1y)e P:*,  region # 1
2 2 .
2 2 .
As (k,};,fsxj) e Pix g=Pr3y p=ib:z region # 3.
(1)

For the LSM;, mode of SINRD waveguide,
transverse field is given by [14]

the dominant
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where ¢ and w are, respectively, the free-space speed of light
and radian frequency, k; is the propagation constant in region
#1 in Fig. 2(c) and (d), w and h are, respectively, the width and
the height of the SIDW core, m and n are the orders of modes,
and &,1, &2, and &,3 are, respectively, the relative permittivity
of regions #1, #2, and #3. B,,,,1/2/3 is the propagation constant
along the x-/y-axis at region #1/2/3. B, is the propagation
constant along the z-direction. A/Bj, 3 is the amplitude of
electric fields for the corresponding mode at regions #1, #2,
and #3.

For the SIDW operating in the E{, mode and the SINRD
waveguide operating in the LSMj,; mode, the wave impedance
is given by

E k2 _ R2
Zy= = ——" (3)
H, we1 B
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