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Abstract—Unmanned aerial vehicles (UAVs) show significant
potential in enhancing communication services within the mobile
edge computing (MEC) system by taking their advantages on
the flexible mobility and reliable line-of-sight links. However,
in the scenarios with multiple UAV-MECs (UMs) operating
concurrently, potential conflicts in their trajectories need to be
mitigated. Thus, the 3D trajectory needs to be properly designed
in a highly reliable manner. Besides, such an infrastructure-
free communication paradigm also exposes a potential risk of
misuse by malicious parties, which allows them to eavesdrop
on private communications, posing a threat to the security
and privacy. Therefore, we consider a multi-UAV-assisted MEC
communication system, where a UAV maliciously eavesdrops on
the data transmission from the user devices (UDs) while a jammer
is deployed on the ground to interfere with the eavesdropping
channel. In specific, our objective is to minimize the energy
consumption and latency while incorporating fairness metrics
by optimizing the 3D trajectories of UMs, transmission power
of UDs, and the offloading strategies under the constraints
of ensuring communication security and load fairness. Given
the complexity of this mixed-integer nonconvex programming
problem, we decompose the formulated problem into three
subproblems. Specifically, at each time slot, we optimize the trans-
mit power and offloading strategies using theoretical derivation
and mathematical analysis, respectively. Additionally, a multi-
agent deep deterministic policy gradient (MADDPG) algorithm is
employed to optimize the trajectories of UMs. Simulation results
demonstrate that our proposed joint optimization algorithm
successfully minimizes the system energy consumption and delay
as compared to benchmarking schemes.

Index Terms—Multi-UAV, MEC, security, fairness, transmit
power, offloading strategy, MADDPG.

I. INTRODUCTION

W ITH the development of 5G, more emerging tech-
nologies such as virtual reality and augmented reality
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appear and put higher requirements on the network. Traditional
cloud computing can no longer meet the increasing computing
demands. MEC, a key technology of 5G, provides a wide space
for these emerging technologies. As an emerging computing
paradigm, MEC works by moving servers closer to the edge of
the network and providing powerful computing, storage, and
communication services to UDs [1]. In order to improve the
computational requirements of UDs, a number of researchers
have conducted a lot of related studies in recent years. Hou
et al. solved the problem of communication reliability and
stringent latency requirements of vehicular through resource
scheduling [2]. Souza et al. introduced a MEC-Network
Functions Virtualization (MEC-NFV) network model designed
to meet the demands of Ultra-Reliable and Low-Latency
Communication (URLLC) [3].

The extensive implementation of MEC incurs substantial
expenses as it resides at the edge of the network, and deploying
MEC in areas with insufficient communication infrastructure
proves to be a challenging task [4] [5]. Combining the
MEC with UAVs can effectively solve this challenge due to
its flexibility and ease of deployment. For traditional MEC
networks, the complex terrain makes it difficult to guarantee
a good channel quality. While the UAV can be kept at a high
altitude, the UAV-assisted MEC system makes it possible for
the signal to be transmitted in a Line-of-Sight (LoS) channel.
In [6], authors investigate a MISO UAV-assisted MEC network
to address the interference caused by multipath effects. The
study aims to achieve a minimum energy consumption for the
system. In [7], authors employ UAVs as relays to facilitate
UDs in offloading tasks to MEC servers. They present a task
scheduling and allocation algorithm designed to optimize the
energy consumption of the system. Authors in [8] introduce
an enhancement to the channel quality by incorporating the
Reconfigurable Intelligent Surface (RIS).

Within a UAV-assisted MEC system, the predominant share
of energy consumption arises from flight-related energy con-
sumption. Therefore, optimization of the UAV trajectory, cou-
pled with resource allocation to the MEC, becomes imperative.
In [9], authors determine the shortest path for the UAV by
formulating the UAV trajectory optimization subproblem as
a traveling salesman problem. Simultaneous optimization of
the UAV trajectory, resource allocation, and task scheduling
often involves the use of algorithms like successive convex
approximation to attain an overall suboptimal solution [10]
[11] [12]. To enhance adaptability to terrain changes and the
distribution pattern of UDs, the 2D trajectory of the UAV is
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extended to 3D. This extension allows for adjustments in the
flight altitude of the UAV to better accommodate variations in
the environment [13]. In addition, multi-UAV assisted MEC
has been widely emphasized. Each UD can choose one of the
UAVs for mission offloading. This is a mixed integer nonlinear
programming problem. To solve this problem, the model needs
to be simplified to solve the problem step by step [14].

In recent studies, an increasing number of researchers
have employed Deep Reinforcement Learning (DRL) in the
domain of UAV-assisted MEC. In addressing dynamic condi-
tions, long-term optimization, and ambiguous state informa-
tion, DRL is superior than traditional convex optimization
algorithms. Researchers are committed to applying UAV-
assisted MEC systems to more scenarios, which will make
the environmental elements more complex and the size of
the problems to be solved grows, so the computation time
of traditional algorithms cannot meet the demands of UDs.
With powerful data processing capabilities, DRL can explore
solutions in a broad strategy space and effectively capit-
ulate the characteristics of the problem model. Describing
the trajectory planning problem for a UAV as a sequence
of decisions, [15] introduces a sequence-to-sequence pointer
network. This model takes the starting point of the UAV and all
clusters as input, producing the UAV trajectory as its output.
However, this form of node access is only suitable in user-
focused scenarios, while sequential UAV trajectories are more
adapted to realistic scenarios. In [16], the authors optimize
the configuration of the VM based on the DQN algorithm.
For UAV trajectories, the DDPG algorithm, which is more
suitable for large dimensional continuous spaces, is used. In
[17], authors address a resource allocation problem that takes
into account both delay and energy consumption. They utilize
DQN to initialize the user association policy and combine it
with a greedy policy to swiftly attain the optimal solution.
Additionally, the motion trajectories of multiple UAVs are
optimized using the DDPG algorithm.

In addition to this, fair competition is also a critical issue.
Since UAV is sensitive to energy consumption, when the task
allocation is not fair, it will result in a waste of energy and
computational resources, making the system less efficient in
task processing. Therefore some researchers have made some
studies on the fairness of UAV-assisted MEC. In [18], authors
prevent overloading the UAV computation by limiting the size
of the ground device’s task volume. In [19], the authors include
fairness metrics as part of the Soft Actor-Critic (SAC) reward
mechanism when optimizing UAV tracks and allocation of
resources based on the SAC algorithm to ensure the fairness
of the system in different scenarios. In [20], the authors’ goal
is to optimize the fairness and the energy consumption of the
system by optimizing the choice of UDs based on the Nash
equilibrium to obtain higher fairness.

Data security is a critical concern in UAV-assisted MEC
system. Due to the channel specificity, UAVs are greatly
probable to be exposed in a monitored environment, where
eavesdroppers can intercept information from UDs through the
data link. To protect the data stream, traditional encryption
techniques like encrypted communication and authentication
can be applied [21], along with emerging physical layer

security approaches such as signal jamming to increase eaves-
dropping difficulty [22]. For instance, a lightweight symmetric
encryption algorithm was proposed in [21] to ensure data
confidentiality, while the authors in [23] enhanced physical
layer security with protected areas. The work [24] designed a
protocol for improving security throughput of users with poor
channel quality, where confidential messages and artificial
noises are sent in a small time slot and remaining time slot,
respectively. However, due to the high-speed mobility and
dynamic topology of UAVs, traditional techniques may be
hard to offer sufficient security and face challenges on location
leakage, key management difficulties, and increased commu-
nication latency. Towards this end, existing work overcome
the above issues via network optimization, such as resource
allocation, offloading strategy, and UAV trajectory optimiza-
tion [25] [26] [27]. In particular, a design in multiple sources
of jamming signals emission was proposed in [28] to improve
system security by jointly optimizing UAV position, jamming
signal emission power, and resource allocation. However, tra-
ditional algorithms are hard to obtain the optimal solution and
often require several iterations to get the alternative suboptimal
results, highlighting the research significance of combining
DRL with UAV-MEC.

From the current research status, there are not many stud-
ies for multiple UMs in 3D trajectory scenarios. Under 3D
scenarios, the flight model of drones makes the problem
more complicated, and the limitation of the multi-intelligent
body model to obtain information increases the difficulty of
convergence of the algorithm. Therefore, we investigate a
multi-UAV assisted MEC system in 3D scenarios. Specifically,
multiple UDs are randomly distributed on the ground, and
multiple UMs provide mission offloading computation services
for UDs from different starting points. An eavesdropping
UAV is also present in the system, and a jammer is installed
on the ground in order to interfere with the quality of the
eavesdropping channel. To prevent overloading of individual
UMs as well as to reduce the energy and the latency consumed
by the system, we optimize the offloading policy of each UD
with fairness in mind. In terms of communication security,
we adjust the offloading mode according to the channel state
of UDs to meet the security requirements of the system. In
addition, we study the relationship between the transmit power
of UDs and the energy and the latency consumed by the
system and obtain the optimal solution by formula derivation.
For the trajectory optimization of UMs, we consider the 3D
flight energy model of UMs and find the optimal trajectory of
UMs under the requirement of minimizing the energy and the
latency consumed by the system. The main contributions are
summarized as follows:

• We present a 3D multi-UAV assisted MEC system that
considers fairness and communication security. Each UD
randomly generates tasks at each time slot, and the UDs
can choose to offload to the UM side for processing or
local processing. Each drone needs to act on decisions
based on changes in the current environment. For fairness
between UMs and secure communication between UDs
and at the same time reducing the energy consumption
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and latency of the system, we jointly optimize the launch
power and unloading policy of UDs, as well as the 3D
flight tracks of UMs.

• We decompose our optimization problem into three sub-
problems given that it is a mixed integer linear program-
ming problem. Specifically, firstly, we prove the existence
of an optimal solution for the launch power by ana-
lyzing the mathematical relationship between the energy
consumption model and the launch power. Secondly, an
iterative optimization algorithm based on Nash equilib-
rium is theoretically derived and proposed to obtain the
optimal offloading ratio and UDs association policy by
combining the safety factor. We describe the UAV flight
process as a Markov decision process and optimize drone
trajectories on the basis of the MADDPG algorithm after
obtaining the optimal solutions for the transmit power
and offloading strategy of a single time slot.

• We demonstrate through simulation experiments that our
proposed algorithm has good convergence. For energy
consumption and delay, our proposed algorithm outper-
forms other reference algorithms while maintaining high
fairness and communication security.

The rest of the paper is organized as follows. Section II
describes the system model. Section III gives the formulation
of the optimization problem. Section IV describes our power
control scheme, UDs offloading strategy, and Drones trajectory
optimization algorithm based on MADDPG. Section V gives
the simulation results and analysis. Section VI gives the
summary of the paper.

II. SYSTEM MODEL

The model of our proposed 3D multi-UAV assisted MEC
system is shown in Fig. 1. The system consists of I UDs
as well as J legal UMs, MEC servers serving the UDs are
integrated into each UAV. We denote the set of UDs and UMs
by I and J , respectively. We define the flight time slots of
the UMs to be denoted by the set T = {1, 2, ..., T}. Each
UD generates a random size of tasks at each time slot, and
the size of the tasks generated by the UDs at time slot t is
denoted by the set L = {L1(t), L2(t), ..., LI(t)}. Considering
the user’s demand for low energy consumption and low latency
for task processing, UDs need to offload tasks to the UMs for
processing. We use Time Division Multiple Access (TDMA)
protocol to offload tasks to UMs, and UDs have the option of
offloading tasks to UMs or keeping them for local processing.

In addition, the system also contains an eavesdropping UAV
(EU), which is used to eavesdrop on the data transmitted by
the users to the UMs. Assuming that the EU is camouflaged in
such a way that we cannot identify whether it is a legitimate
UAV or not, and assuming for convenience that the starting
point, altitude, and direction of the EU’s trajectory are de-
termined, we can enhance the communication security of the
system by controlling the offloading ratio of the UDs. In the
center of the ground coverage area, we place a ground jammer
(GJ), which interferes the EU by transmitting jamming signals
to mislead the EU. Since the characteristics of the jamming
signal emitted by the GJ are known to the UMs, they can filter
out the jamming signal at the receiving end of the signal.

Fig. 1. 3D multi-UAV assisted MEC system model.

Define the positions of the UDs and UMs at time slot
t as Ui(t) = {Xi(t), Yi(t), 0}, i ∈ I, and Mj(t) =
{Xj(t), Yj(t), Hj(t)}, j ∈ J , respectively. The positions of
EU and GJ are Meu(t) = {Xeu(t), Yeu(t), Heu(t)} and
Mgj = {Xgj , Ygj , 0}, respectively. The UMs are each from
a different starting point MSj , j ∈ J and the displacement
constraints for each UM can be expressed as

||Mj(t+ 1)−Mj(t)|| ≤ qmax, j ∈ J , t ∈ T , (1)

where qmax denotes the maximum displacement constraint.
The deflection angle constraint for UMs is expressed as

θmin
h ≤ θjh(t) ≤ θmax

h , (2)

θmin
v ≤ θjv(t) ≤ θmax

v , (3)

where θjh(t) and θjv(t) denote the horizontal and vertical
deflection angles of the j-th UM, respectively. θmin

h and θmax
h

denote the horizontal deflection angle constraints, and θmin
v

and θmax
v denote the vertical deflection angle constraints.

A. Communication Model

Due to the terrain, we determine the large scale fading of
UMs-UD links by using the probability LoS channel model
[29]. During the communication process, we only consider the
uplink communication model because the amount of returned
data is negligible compared to the processing period. We define
the LoS probability between the i-th UD and the j-th UM as
PLoS
i,j (t), PLoS

i,j (t) can be expressed as

PLoS
i,j (t) =

1

1 + λ1exp{−λ2(θi,j(t)− λ1)}
, (4)

Where λ1 and λ2 are parameters associated with the environ-
ment, and θi,j(t) denotes the angle of elevation between i-th
UD and j-th UM in time slot t, which can be expressed as

θi,j(t) = (180/π) arcsin(
Hj(t)

di,j(t)
)

= (180/π) arcsin(
Hj(t)

||Mj(t)− Ui(t)||
),

(5)
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where di,j(t) denotes at time slot t the Euclidean distance
between the i-th UD and the j-th UM in 3D space. Therefore,
the NLoS probability can be expressed as PNLoS(t) = 1 −
PLoS(t).

Similarly, the LoS probabilities PLoS
i,e and PLoS

g,e between
the i-th UD and EU , GJ and EU at time slot t are denoted
by

PLoS
i,e =

1

1 + λ1exp{−λ2(θi,e(t)− λ1)}
, (6)

PLoS
g,e =

1

1 + λ1exp{−λ2(θg,e(t)− λ1)}
, (7)

where θi,e(t) = (180/π) arcsin(He(t)/di,e(t)) and θg,e(t) =
(180/π) arcsin(He(t)/dg,e(t)) denote the elevation angles be-
tween i-th UD and EU , GJ and EU at time slot t, respectively.

In this study, considering the rather high height of UMs and
the relatively short flight distance within each time slot, we
consider the constancy of the channel gain of UMs during each
time slot. The channel gains between i-th UD and j-th UM,
i-th UD and EU, and GJ and EU at time slot t are denoted
by [32]

hi,j(t) =
PLoS
i,j (t)β0 + PNLoS

i,j (t)κβ0

dηi,j(t)
, (8)

hi,e(t) =
PLoS
i,e (t)β0 + PNLoS

i,e (t)κβ0

dηi,e(t)
, (9)

hg,e(t) =
PLoS
g,e (t)β0 + PNLoS

g,e (t)κβ0

dηg,e(t)
, (10)

Where κ is the decay rate of NLoS, β0 is a channel gain per
unit distance, and η is a path loss index.

In this paper, we use TDMA protocol for communication.
Since the UMs have prior knowledge about the interference
signals emitted by the GJ, the GJ only causes interference to
the EU. Therefore, for the communication channels between
UDs and UMs, and UDs and EU, the signal interference noise
ratio (SINR) can be written as

ri,j(t) =
pi,j(t)hi,j(t)

δ20
, (11)

ri,e(t) =
pi,j(t)hi,e(t)

pghg,e(t) + δ20
, (12)

where pg is the transmit power of GJ. pi,j(t) is the transmit
power of the i-th UD. δ20 is the power of noise. The transmit
power constraint for UDs is defined as

0 ≤ pi,j(t) ≤ Pmax, (13)

where Pmax denotes the maximum transmit power of UDs.
After obtaining the SINR, it can be known from the Shan-

non formula that the data transmission rate Ri,j(t) and the
eavesdropping rate Ri,e(t) can be expressed as

Ri,j(t) = B log2(1 + ri,j(t)), (14)

Ri,e(t) = B log2(1 + ri,e(t)), (15)

where B represents the channel bandwidth.

We define two types of connection states between UDs
and UMs as connection and disconnection, and the states are
updated in real-time for each time slot. The connection state
can be expressed as

ai,j(t) =

{
1, Connection,
0, Disconnection.

(16)

Assuming that each UD is connected to only one UM per
slot and that the i-th UD has the option of partially processing
the task by unloading it to the UM in the connected state or
processing the task locally. The constraint of the offloading
policy φi,j(t) is given by

0 ≤ φi,j(t) ≤ 1. (17)

To evaluate the privacy and security trade-off during the data
offloading period, we define a security scaling factor si,j(t),
si,j(t) is denoted as

si,j(t) =

∑
j∈J ai,j(t)ri,j(t)

ri,e(t)
. (18)

This security scaling factors indicate that if the security
scale factor of the i-th UD satisfies si,j(t) ≥ smin, the i-
th UD can choose the partial offloading policy, otherwise, it
can only choose the local processing policy.

B. Computation Model

We give a model of the energy consumption and delay
required for the corresponding task processing, depending on
the offloading strategy.
• Local Computing: If the policy for i-th UD is full local
offloading, the latency of local processing is given as

T loc
i (t) =

CudLi(t)

Fud
, (19)

where Fud is the computing resource of per UD. Cud is the
number of CPU cycles required by each UD to process per
bit data. The local processing energy consumption of the i-th
UD is represented as

Eloc
i (t) = kudF

3
udT

loc
i (t), (20)

where kud is the i-th UD’s effective capacitance coefficient.
• Partial Offloading: If the policy for i-th UD is partial
offloading, the energy and the latency consumed by the part
of the local processing is written as

T loc
i,j (t) =

ai,j(t)Cud(1− φi,j(t))Li(t)

Fud
, (21)

Eloc
i,j (t) = kudF

3
udT

loc
i,j (t). (22)

Since the consumption formulas for energy and delay for
local processing of the partial offloading strategy are the
same as for the full local processing strategy, the full local
processing strategy can be viewed as φ = 0. i.e., it is described
as a partial offloading strategy in all the subsequent sections.
The other part of the tasks of the i-th UD will be handed over
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P fly(v, F ) = n

cr
8

(
F

ctρA
+ 3v2

)√
Fρs2rA

ct
+ (1 + cf )F

(√
F 2

4ρ2A2
+

v4

4
− v2

2

)0.5

+ 0.5drv
3ρsrA+

m||g||v
n

sin θc

 .

(29)

to UMs. The delay required for this part of the tasks to be
uploaded can be expressed as

Tup
i,j (t) =

ai,j(t)φi,j(t)Li(t)

Ri,j(t)
. (23)

Then the energy consumption required for uploading is

Eup
i,j (t) = pi,j(t)T

up
i,j (t). (24)

The consumed latency and energy required to process the
portion of the task offloaded to the UMs can be expressed as

Tum
i,j (t) =

ai,j(t)Cumφi,j(t)Li(t)

Fum
, (25)

Eum
i,j (t) = kumF 3

umTum
i,j (t), (26)

where Fum is the computational resource of UMs and kum is
the effective capacitance coefficient of UMs.

During the processes of offloading tasks from UDs to UMs,
the EU eavesdrops on the tasks offloaded by the UDs. The size
of the data volume that the EU eavesdrops on to the i-th UD
is written as

Le
i (t) =

{∑
j∈J ai,j(t)Ri,e(t)T

up
i,j (t), Partial Offloading,

0, Local Computing.
(27)

C. Flight Model

UMs consume energy in addition to processing tasks, and
another portion of their energy is used to generate thrust to
maintain the UMs in flight. Similar to [30], we build a 3D
quadrotor UAV flight model that only considers acceleration
in the same straight line as the velocity of the UMs, and does
not consider acceleration in the vertical direction. The thrust
of each rotor can be expressed as

F (v,a) =
1

n

∥∥∥∥(m ∥ a ∥ +1

2
ρv2Sa)v −mg

∥∥∥∥ , (28)

where a denotes the acceleration vector, v is the flight velocity
vector, v = |v| is the velocity scalar of single UM, m is the
mass of a single UM, n is the number of rotors of the UMs, ρ
is the air density, Sa denotes the equivalent flat surface area,
and g denotes the gravitational acceleration vector. According
to [30], the power required for propulsion of an individual UM
is expressed in (29), where cr is the blade local cross-section
drag coefficient, A is the rotor disc area, sr is the rotor solidity,
ct denotes the thrust coefficient based on the disc area, dr and
cf are the incremental correction coefficients for the induced
power and fuselage drag ratios, respectively, and θc denotes the
angle between the flight direction and the horizontal direction.

The UMs process tasks by using queue scheduling, while
the UDs are processing at the same time, so at time slot t the
flight time of the j-th UM is

T fly
j (t) = max

{
max

{
T loc
i,j (t)

}
, Tup

i,j (t) + Tum
i,j (t)

}
. (30)

After obtaining the flight propulsion power and the flight
time of individual UM, we can calculate the flight energy
consumption of each UM, i.e., at time slot t the j-th UM’s
flight energy consumption is

Efly
j (t) = P fly(t)T fly

j (t). (31)

III. PROBLEM FORMULATION

To prevent individual UM connections from being over-
loaded, in this paper, we equalize the number of UDs con-
nected on each UM. According to the Jain’s fairness index
[31], at time slot t the average load on the j-th UM is

Cj(t) =

∑
i∈I ai,j(t)φi,j(t)

I
. (32)

By the general form of the Cauchy-Schwartz inequality, for
any real numbers ak, bk, k ∈ N+, there is (

∑K
k=1 akbk)

2 ≤∑K
k=1 a

2
k

∑K
k=1 b

2
k. Hence we get∑

j∈J
Cj(t)

2
∑
j∈J

C̄j(t)
2 ≥ (

∑
j∈J

Cj(t)C̄j(t))
2, (33)

where the condition for the equality sign to hold is C1(t)
C̄1(t)

=
C2(t)
C̄2(t)

= ... = CJ (t)
C̄J (t)

. Let C̄1(t) = C̄2(t) = ... = C̄J(t). We let
the inequality transform as

(
∑

j∈J Cj(t))
2

J(
∑

j∈J Cj(t)2)
≤ 1. (34)

Let the left side of (34) be C(t), which denotes the fairness
metric between UMs. When C(t) = 1 then it indicates that
the load is perfectly balanced among UMs.

This paper is intended to optimize the system by minimizing
the weighted sum of the total delay and total energy consumed,
under the condition of considering UMs load balancing and
communication security. Total energy consumption includes
UMs’ energy consumption for flight and computation, and the
computational and offload energy consumption of the UDs.
The total delay includes the computational delay of each task
as well as the offloading delay. Specifically, the optimization
objective can be expressed as

Q(t) =
1

C(t)

∑
j∈J

[∑
i∈I

(
Eloc

i,j (t) + Eup
i,j (t) + Eum

i,j (t)
)

+
∑
i∈I

max{T loc
i,j (t), T

up
i,j (t) + Tum

i,j (t)}+ ωEfly
j (t)

]
,

(35)
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where ω denotes the weighted value of flight energy consump-
tion.

By optimizing the trajectory of UMs Mj(t), the offloading
strategy of UDs ai,j(t) and the transmit power pi,j(t), it
reduces the weighted sum of the total energy and the total
delay consumed by the system. We formulate the optimization
problem as

Q = min
{Mj(t)},{Ai,j(t)},{pi,j(t)}

T∑
t=1

Q(t) (36a)

s.t. (1), (2), (3), (13), (16), (17) (36b)
Xl ≤ Xj(t) ≤ Xr,∀j ∈ J ,∀t ∈ T , (36c)
Yd ≤ Yj(t) ≤ Yu,∀j ∈ J ,∀t ∈ T , (36d)
Hl ≤ Hj(t) ≤ Hh,∀j ∈ J ,∀t ∈ T , (36e)∑
j∈J

ai,j(t) = 1,∀i ∈ I,∀t ∈ T , (36f)∑
i∈I

ai,j(t) ≤ Nmax,∀j ∈ J ,∀t ∈ T , (36g)

Le
i (t) ≤ Lmax

e ,∀i ∈ I,∀t ∈ T , (36h)

where Mj(t) denotes the trajectory optimization variable
for UMs. Ai,j(t) denotes the optimization variable for the
offloading strategy of UDs. pi,j(t) denotes the user transmit
power optimization variable. (36c)-(36e) denote the position
constraints of UMs, which can only fly in the specified space.
(36f) denotes that each UD must and can only be associated
with one UM at any time slot. (36g) denotes the number of
association constraints of UMs, where the number of UDs
associated with each UM in any time slot cannot exceed the
tolerance range. (36h) denotes the communication security
constraint, i.e., the amount of information eavesdropped on
each UD at any time slot does not exceed the maximum
security bound.

IV. THEORETICAL ANALYSIS AND ALGORITHM DESIGN

We propose an algorithm in this section to optimize the
problem in (36) by jointly optimizing the trajectory, the of-
floading strategy, and the launch power. Since the multivariate
coupling, binary constraints, and (36h) are nonconvex, (36)
is also nonconvex. We divide this nonconvex optimization
problem into three subproblems so as to solve it.

A. Power Control

We fix the trajectory of UMs Mj(t) and the offloading
strategy of UDs Ai,j(t) to discuss the transmit power problem
of UDs. Since the variables related to the transmit power
pi,j(t) in the t-time slot optimization objective Q̄(t) include
only the transmission energy consumption and delay, thus the
optimization problem simplifies to

Q̄(t) = min
pi,j(t)

∑
i∈I,φ̸=0

(Eup
i,j∗(t) + Tup

i,j∗(t)) (37a)

s.t. 0 ≤ pi,j∗(t) ≤ Pmax,∀i ∈ I, (37b)

where j∗ denotes the association selection of UDs after fixing
the offloading policy. From (37a), Q̄(t) is the sum of the

latency and energy consumed by the unloading of per UD.
Therefore, the optimization problem can be reduced to the
transmit power problem for a single UD, i.e., finding the
minimum value of Q̄i(pi,j∗(t)).

Theorem 1: Q̄i(pi,j∗(t)) has only one minimal value in the
interval pi,j∗(t) ∈ (0,+∞).

Proof 1: The expansion of Q̄i(pi,j∗(t)) is expressed as

Q̄i(pi,j∗(t)) =
(1 + pi,j∗(t))φi,j(t)Li(t)

B log2(1 +
pi,j∗ (t)hi,j∗ (t)

δ20
)
,

φi,j∗(t) ̸= 0.

(38)

Find the derivative Q̄′
i(pi,j∗(t)) with respect to pi,j∗(t) for

Q̄i(pi,j∗(t)), which is denoted by

Q̄′
i(pi,j∗(t)) = µpνp, (39)

where µp, νp are denoted as

µp =
ln 2φi,j∗(t)Li(t)hi,j∗(t)

Bδ20(1 +
hi,j∗ (t)

δ20
pi,j∗(t)) ln

2(1 +
hi,j∗ (t)

δ20
pi,j∗(t))

,

(40)

νp =(pi,j∗(t) +
δ20

hi,j∗(t)
) ln(1 +

hi,j∗(t)

δ20
pi,j∗(t))

− pi,j∗(t)− 1.

(41)

From (40), it can be seen that up is always higher than 0
regardless of the value of pi,j∗(t). Therefore, we only need to
discuss the variation of vp. The initial and final values of vp
in the interval pi,j∗(t) ∈ (0,+∞) are

vp(0) = −1 < 0, (42)

lim
pi,j∗(t)→+∞

vp = +∞. (43)

(42) (43) prove the existence of zero-valued points of vp in
the interval (0,+∞). We take the derivative with respect to p
for vp to get

v′p = ln(1 +
hi,j∗(t)

δ20
pi,j∗(t)). (44)

From (44) it follows that the value of v′p in the interval
(0,+∞) is constantly greater than 0, so vp is monotonically
increasing. Let pi,j∗(t) = p∗ when vp = 0, so that the value
of Q̄i(pi,j∗(t)) at that point takes the minimum value.

To satisfy the constraints of (37b), comparing p∗ with Pmax,
the i-th UD’s transmit power at t slot is finally given by

p∗i,j∗(t) =

{
p∗, p∗ < Pmax,

Pmax, p∗ ≥ Pmax.
(45)

B. Offloading Strategy Optimization

To reduce the task processing latency of a single UD, we
optimize the unloading ratio to obtain the minimum value, i.e.,
solving the problem of min{max{T loc

i,j (t), T
up
i,j (t)+Tum

i,j (t)}}.
From the increasing and decreasing characteristics of the two
parameters in the equation, the minimum latency value is
achieved when T loc

i,j (t) = Tup
i,j (t) + Tum

i,j (t) [20]. Therefore,
the optimal offloading ratio is given by

φi,j(t) =
CumFi,j(t)Ri,j(t)

FudFum + (CumFud + CudFum)Ri,j(t)
. (46)
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Fixing the trajectory Mj(t) of the UMs and by having
optimized the user launch power pi,j(t) and the offloading
ratio φi,j(t), we come to discuss the offloading selection
problem for UDs. For communication security reasons, in (18)
we define a security scaling factor. We assume that the i-th
UD chooses to associate with the j-th UM, and if the si,j(t)
of the communication link between them is lower than the
minimum security tolerance limit, we make the offloading ratio
φi,j(t) = 0 for the i-th UD.

In terms of association policies for UDs, since the number
of UDs as well as the number of UMs is fixed, the dimensions
of the association policies are fixed, we only need to select
the optimal policy within a limited combination of policies.
What is affected by different strategies is the data transfer rate
between UDs and UMs. From (8) (11) (14), the data transfer
rate is inversely proportional to the distance of transmission,
so the task processing delay is proportional to the distance
of transmission. In literature [20] it is proved that the energy
consumption is proportional to the transmission distance, so
the strategy of choosing the UM with the shortest distance can
be used as the initial strategy without considering fairness. We
take the minimization of Q(t) in (35) as the objective of the
optimization of the association strategy and denote it as

min
ai,j(t)

Q(t)

s.t. (16)(36f)(36g)
(47)

We define the association policy of UDs and the association
policy of removing the i-th UD as

Ā∗
I = {Ā1, Ā2, ..., ĀI}, (48)

Ā∗
−i = {Ā1, Ā2, ..., Āi−1, Āi+1, ..., ĀI}, (49)

where Āi is the association choice of the i-th UD.
Define minQ(Ā∗

−i|Āi) as the basis of the i-th UD’s choice
preference. When in Nash equilibrium, if Ā∗

−i is unchanged,
a change in association choice Āi of any UD will not reduce
the value of Q.

Definition 1: If Q(Ā∗
I) ≤ Q(Ā∗

−i|Āi) is satisfied, then the
set of associations of the I UDs is a Nash equilibrium in the
game process.

According to Definition 1, when the associated strategy
satisfies the Nash equilibrium condition, then the current asso-
ciated strategy is the optimal strategy. Therefore, we propose
an algorithm for strategy matching based on Nash equilibrium,
and the specific steps are shown in Algorithm 1.

C. UMs Trajectory Optimization

Based on the optimization of the launch power as well as
the unloading strategy, we come to discuss the optimization of
the flight trajectory of UMs. Since the UMs in our designed
UAV-assisted MEC system model fly in 3-D space and the
parameter space of UMs and UDs is too large, we consider the
optimization of the flight trajectories of UMs using a MADRL
algorithm. In this paper, we discuss a problem of continuous
actions optimization in a 3-D space. Therefore, we optimize
the trajectories of the UMs using the MADDPG algorithm.
We characterize the problem as a Markov decision process,

Algorithm 1: Matching based on Nash equilibrium
Initialize: UDs select UMs to match based on nearest

distance;
for j = 1 : J do

if
∑

i∈I ai,j(t) > Nmax then
ind = argmin(hi,j(t), Nmax −

∑
i∈I ai,j(t));

Corresponding UDs in ind select the next
closest UM for association;

end
end
Calculate the current Q(t);
while No strategy update do

for i = 1 : I do
for j = 1 : J do

if ai,j(t) == 0 and
∑

i∈I ai,j(t) < Nmax

then
ai,j(t) = 1;
Calculate the Q′(t) after updating the
policy;

if Q′(t) < Q(t) then
Modify the optimal policy to the
updated policy;
Q(t) = Q′(t);

else
ai,j(t) = 0;

end
end

end
end

end

Specifically, the main components are state space, action
space, reward, and state transfer probabilities (S,A,R, P ).

1) States: The state space primarily encompasses the states
of the elements within the environment, so we define S as

S = {Mj(t),Meu(t),Mgj ,Mi(t), Li(t)},
i ∈ I, j ∈ J , t ∈ T ,

(50)

where Mj(t), Meu(t), Mgj , and Mi(t) denote the coordinates
of the UMs, the coordinate of the EU, the coordinate of the
GJ, and the coordinates of the UDs at time slot t, respectively,
and Li(t) denotes the size of the generated tasks of the UDs
at time slot t.

2) Actions: The maneuvering space consists of the flight
distances, the horizontal deflection angles, and the vertical
deflection angles of the UMs, Define A as

A = {qj(t), θjh(t), θ
j
v(t)}, j ∈ J , t ∈ T , (51)

where qj(t) is the flight distance of the j-th UM at t slot. The
position update of the j-th UM at t slot is given by

Xj(t+ 1) = Xj(t) + qj(t) cos(θ
j
h(t)) cos(θ

j
v(t)),

Yj(t+ 1) = Yj(t) + qj(t) sin(θ
j
h(t)) cos(θ

j
v(t)),

Hj(t+ 1) = Hj(t) + qj(t) sin(θ
j
v(t)).

(52)

3) Reward: In this paper, our goal is to maximally reduce
the weighted sum of the system’s energy consumption and
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delay, considering communication security as well as fairness,
while RL is intended to maximize the cumulative reward, so
we define R as

R =
∑
j∈J

Rj =
∑
j∈J

(−
∑
t∈T

Qj(t)), (53)

where Rj denotes the part of Q(t) associated with the j-th
UM, i.e., Q(t) =

∑
j∈J Qj(t).

In order to train the model better, we give the corresponding
penalization mechanism for different non-ideal cases:
• UMs fly out of bounds penalty: During the training

process, once one of the UMs flies out of the boundary, we
give a penalty to the corresponding agent.

Rj = Rj −Rout. (54)

• UMs collision penalty: We do not tolerate UMs collisions,
so in the event of a collision, negative infinity is added to the
total reward and then the training goes straight to the next
round.

R = R−∞. (55)

• Failure to meet communication security requirements: If
the poor trajectory optimization of UMs leads to compromised
communication security, we impose a corresponding penalty
based on exceeding the communication security requirements.

R = R− ε(Le
i (t)− Lmax

e ), (56)

where ε denotes the penalty factor for communication security.
4) State Transfer Probabilities: The probability of taking

action a to move to the next transitive state s′ at state s is
defined as P = {p(s′|s, a),∀s, s′ ∈ S, a ∈ A}.

The improvement of MADDPG over the traditional AC
algorithm is that MADDPG uses a centralized training and
distributed execution framework. During training, each agent’s
critic network aggregates the states and actions of all agents to
compute a Q-value, while each agent’s actor network decides
actions based solely on its own local state. The Critic network
is extended to allow learning using the strategies of other
agents, and a further improvement of this point is that each
intelligence approximates a function to the strategies of the
other agents. The algorithm is designed along the following
lines:
• Multi-agent AC design: We denote the parameters of

the strategies of the n-th agent by θ = [θ1, ..., θN ], and
µ = [µ1, ..., µN ] denotes the deterministic strategies of the
N agents. The cumulative expected reward for the nth agent
J(θn) = Es,a∼D[

∑
t∈T γrn,t]. γ denotes the rewards discount

factor. Then the strategy gradient is

▽θn J(µn) =

Es,a∼D[▽θnµn(an|on)▽an
Qµ

n(s, a1, a2, ..., aN )|an=µn(on)],
(57)

where D denotes the experience replay buffer with elements
composed of {s, a, r, s′, done}, on denotes the observation of
the nth agent. Qµ

n denotes the centralized state-action function
of the n-th agent. We update the critic network parameters by
minimizing the loss function, which is written as

L(θn) = Es,a,r,s′ [(Q
µ
n(s, a1, a2, ..., aN )− y)2], (58)

where y is denotes as

y = rn + γQµ′

n (x′, a′1, a
′
2, ..., a

′
N )|a′

j=µ′
j(oj)

, (59)

where Qµ′

n denotes the target network and µ′ =
[µ′

1, µ
′
2, ..., µ

′
N ] is the parameter θ′j for which the target policy

has a lagged update. θ′j can be obtained by delayed fitting
approximation.
• Policies Ensemble: Since each agent’s strategy is updated

iteratively causing the environment to be dynamically unstable
for a particular agent, in order to be able to better cope with
this situation, MADDPG utilizes the idea of strategy ensem-
bles: the n-th agent’s strategy µn consists of a set with K sub-
strategies, and just one sub-strategy µ

(k)
n is used in each train-

ing episodes. for each agent, we maximize the overall reward
of its strategy ensemble Je(µn) = Ek∼unif(1,K),s,a∼D(k) . And
we construct a memory store D

(k)
i for each sub-strategy k. We

optimize the overall effect of the strategy ensemble so that the
update gradient for each sub-strategy is

▽
θ
(k)
n

Je(µn) =

1

K
E
s,a∼D

(k)
n

[▽
θ
(k)
n

µ(k)
n (an|on)▽an

Qµ
n(s, a)|an=µ

(k)
n (on)

].

(60)

Combining the previous power control as well as the of-
floading strategy optimization, our proposed joint optimization
algorithm is shown in Algorithm 2.

V. SIMULATION RESULTS

In this section, we give the simulation results of our
proposed joint optimization algorithm. The range of the site
for our simulation is 500 × 500 m2. The positions of the
UDs, UMs, EU, and GJ are within this range at each time
slot. The UDs appear randomly within the site. The flight
altitude of the UMs ranges from 100 m to 300 m, with a
starting altitude of 200 m. The flight altitude of the EU is
100 m, and the trajectory of the EU is fixed as a flight path
from (0, 500, 100) to (500, 0, 100). In this paper, simulations
are performed on Python 3.7, and the parameters of the
reinforcement learning algorithm are set as follows: learning
rate lr = 0.001, reward discount factor γ = 0.95, and soft
update parameter τ = 0.001. In addition, the rest of the
simulation parameters are set as specified in Table I.

As shown in Fig. 2, we give the training rewards of each
agent and the total training rewards of the system. From the
figure, we can see that the training results of UM1 and UM2

are similar because they are assigned similar amounts of tasks
after equalization, and thus the energy consumption and delay
are also similar. In addition, the convergence results show that
convergence is basically reached after about 7000 episodes of
training, so in terms of training effectiveness, our proposed
algorithm can train a better model in a short period of time.

The fairness convergence result of the system is shown in
Fig. 3, similar to Fig. 2, fairness reaches convergence at about
7000 rounds of training, and the fairness stays around 0.98,
which is enough to keep UMs in the load-balanced state at
any time slot. Therefore, our proposed algorithm can meet the
higher load balancing requirements.
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Algorithm 2: Proposed Joint Optimization Algorithm
Initialize: actor policy network µ, target policy network
µ′ with weights θ, θ′ for all agents, replay buffer D;

for episode = 1 : max episode do
Initialize a random process N for action
exploration;

Initialize the state s0 and step = 0;
while done == False do

step = step+ 1;
Select action an = µθn(on) +Nstep for each

agent based on current policy and exploration;
Input actions a = (a1, ..., aN ) into the

environment;
According to (41) (46) and Algorithm 1 to

obtain the optimal transmit power and
offloading strategy;

Obtain the reward r and the next state s′ for all
agents;

Store (s, a, r, s′, done) in replay buffer D;
s← s′;
for agent n = 1 : N do

Sample a random minbatch of S
(sj , aj , rj , s′j) from D;

Set yj by (59);
Update critic by minimizing the loss L(θn)

in (58);
Update actor using the sampled policy

gradient ▽θnJ in (57);
end
Update target network parameters for each

agent:
θ′n ← τθn + (1− τ)θ′n;
if step == max step or UMs collide then

donen = True;
R =

∑step
t=1 r(t);

end
done = [done1, ..., doneN ];

end
end

Our proposed algorithm is compared with the algorithm
with fixed transmit power. In this case, the transmit power
of the comparison algorithms are set to 0.2w and 0.5w,
while the other variables are optimized by using our proposed
algorithm. As shown in Fig. 4 and Fig. 5, we give the average
computational energy consumption and average computational
delay for each UM per time slot as the number of UDs varies
and the number of UMs varies. As shown in Fig. 4(a) and Fig.
5(a), as the number of UDs increases, the number of tasks
to be processed also increases, and hence the average energy
consumption and delay also increase as shown in the figure.
As shown in Fig. 4(b) and Fig. 5(b), as the number of UMs
increases, the computational resources of the MEC server are
more sufficient, and the UDs can offload more tasks to the
UMs to be processed, so the average computational energy
consumption and latency of the system are lower, however,

TABLE I
RELEVANT PARAMETERS

Parameters Value
The number of UDs I 15
The number of UMs J 2

Maximum flight distance qmax 40 m
Maximum transmit power Pmax 0.5 w

transmit power of GJ pg 0.3 w
Minimum safe distance between UMs dmin 5 m

Starting point coordinates of UM1 MS1 (0,0,200)
Starting point coordinates of UM2 MS2 (500,0,200)

Location of GJ Mgj (250,250,0)
The minimum security scaling factor smin 100

The channel bandwidth B 1 MHz
The noise power δ20 10−13 w/Hz

Channel gain per unit distance β0 10−5

Propagation environment type constant λ1, λ2 15, 0.5
The path loss exponent η 2.3

NLoS attenuation κ 0.2
Computing resources per UD Fud 1 GHz

Required CPU cycles per bit computation per UD Cud 1000 cycles/bit
CPU effective capacitance factor per UD kud 10−27

The amount of data per UD L [105, 106] bits
Computing resources for UM Fum 5 GHz

Required CPU cycles per bit computation for UM Cum 800 cycles/bit
CPU effective capacitance factor for UM kum 10−28

Maximum number of associations per UM Nmax 10
The number of rotors per UM n 4

The weight per UM m 2 Kg
The equivalent flat surface area Sa 0.01 m2

The gravitational acceleration g 9.8 m/s2

The local blade section drag coefficient cr 0.012
The thrust coefficient based on disk area ct 0.302

The incremental correction factor cf 0.121
The fuselage drag ratio dr 0.834

The air density ρ 1.225 Kg/m3

The rotor solidity sr 0.0955
The rotor disk area A 0.0314 m2

The weight of per UM’s flight energy ω 10−4

Fig. 2. Training rewards for each agent and all agents.

with the increase in the number of UMs, the computational
resources of the MEC server are too sufficient, which results
in the failure to bring a greater advantage in terms of com-
putational energy consumption and latency. Moreover, over-
increasing the number of UMs will result in resource waste
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Fig. 3. Fairness convergence results.

and large amount of flight energy loss. Finally, from Fig. 4 and
Fig. 5, it can be seen that our proposed algorithm outperforms
the comparison algorithms in terms of energy consumption
and delay due to the optimization of the transmit power of the
UDs.

Our proposed algorithm is compared with algorithms for
different offloading strategies. The comparison algorithms are
as follows:
• Nearest: all UDs select the nearest UM for offloading,

if the number of associations of the nearest UM reaches the
upper limit then select the next nearest UM. other variables
are optimized by using our proposed algorithm.
• Random: all UDs randomly select UMs for offloading,

and if the number of associations of the selected UM reaches
the upper limit, then randomly select among other UMs. Other
variables are optimized by using our proposed algorithm.

As shown in Fig. 6 and Fig. 7, we give the average
computational energy consumption and latency of different
algorithms with varying number of UDs as well as with
varying number of UMs. Similarly, as shown in Fig. 6(a)
and Fig. 7(a), as the number of UDs increases, the number
of computational tasks to be processed increases, and the
average computational energy consumption and latency also
increases. As shown in Fig. 6(b) and Fig. 7(b), as the number
of UMs increases, the computational resources of the system
become more adequate and the average computational energy
consumption and latency decrease. From the figures, we
can see that our proposed algorithm can obtain the optimal
offloading strategy after reaching the Nash equilibrium, so
our proposed algorithm has obvious advantages in offloading
strategy optimization.

In Figure 8, we give the effect of different minimum safety
scale factors on the safety as well as the reward after training
convergence. Since the coefficient varies over a wide range, we
take it to be logarithmic. From the figure, it can be seen that
the security of the system increases as smin increases, while
the reward after training decreases slower in the initial phase
and faster after lg(smin) > 2. This is due to the fact that when

(a)

(b)
Fig. 4. Comparison of average computational energy consumption of different
transmit power optimization algorithms. (a) Effect of the number of UDs on
the average computational energy consumption. (b) Effect of the number of
UMs on the average computational energy consumption.

smin is small, UDs require less security in the channel and
more UDs can choose to offload tasks to UMs for processing,
hence the reward value is higher while security is low. As smin

increases, the security requirements of UDs on the channel
increase, and more UDs choose to process tasks locally, thus
the reward value is low and security is high. In addition, if
we need to satisfy both reward and security requirements, we
can see from the figure that we only need to choose lg(smin)
in the range of [2.0, 2.5].

In Fig. 9, we give the trajectories of the UMs, where the
green curve and the purple curve indicate the flight trajectories
of the UMs, the red straight line indicates the flight trajectory
of the EU, the blue dots indicate the distribution of the
positions of the UDs, and the yellow dot indicates the position
of the GJ. As shown in Fig. 9(b), the altitudes of the UDs are
randomly set in the range [0, 10] m, which are represented by
varying shades of blue, with darker shades indicating higher

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3412825

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 08,2024 at 06:22:43 UTC from IEEE Xplore.  Restrictions apply. 



IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, 2024 11

(a)

(b)
Fig. 5. Comparison of average computational delay of different transmit
power optimization algorithms. (a) Effect of the number of UDs on the
average computational delay. (b) Effect of the number of UMs on the average
computational delay.

altitudes. From Fig. 9(a), it is observed that UMs tend to fly
to the areas with dense UDs. When UMs approach the aera
with fewer UDs, they ascend to increase the elevation angle
for enhancing the LoS probability. In contrast, they descend
when flying towards denser UD regions or closer to the EU,
thereby reducing system energy consumption and delay while
improving communication security. In Fig. 9(b), since the
altitudes of UDs only affect the channel, it is also observed that
our algorithm is well applicable to the practical scenarios with
non-zero altitude. This indicates that our proposed algorithm
could adjust the flight trajectory in time according to the
changes of the environment.

VI. CONCLUSION

In this paper, we investigated a three-dimensional multi-
UAV-assisted MEC communication system. In order to pre-
vent eavesdropping UAV maliciously eavesdrops on the data

(a)

(b)
Fig. 6. Comparison of average computational energy consumption of different
offloading strategy optimization algorithms. (a) Effect of the number of UDs
on the average computational energy consumption. (b) Effect of the number
of UMs on the average computational energy consumption.

transmission from the ground users, we deployed a jammer
on the ground to interfere with the eavesdropping channel.
We proposed a joint power control, offloading strategy, and
optimization problem for the 3D trajectories of UMs. Since
this is a mixed integer nonconvex programming problem, it
was decomposed into three subproblems. Specifically, at each
time slot, we obtained the optimal solutions of the power con-
trol and offloading strategies through theoretical derivations
and mathematical proofs. Then the MADDPG algorithm was
used to optimize the trajectories of UMs in the whole time
slot. Simulation results show that our proposed algorithm can
effectively reduce the system energy consumption and delay
while ensuring a high-level of fairness and communication
security of the system.
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