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Abstract—Unmanned aerial vehicles (UAVs)-assisted mobile-
edge computing (MEC) communication system has recently
gained increasing attention. In this article, we investigate a
3-D multi-UAV trajectory optimization based on ground devices
(GDs) selecting the target UAV for task computing. Specifically,
we first design a 3-D dynamic multi-UAV-assisted MEC system in
which GDs have real-time mobility and task update. Next, we for-
mulate the system communication, computation, and flight energy
consumption as objective functions based on fairness among
UAVs. Then, to pursue fairness among UAVs, we theoretically
deduce and mathematically prove the optimal GDs’ selectivity
and offloading strategy, that is, how GDs select the optimal UAV
for task offloading and how much to offload. While ensuring the
optimal offloading strategy and GDs’ selectivity between UAVs
and GDs at each step, we model UAV trajectories as a sequence
of location updates of all UAVs and apply a multiagent deep
deterministic policy gradient (MADDPG) algorithm to find the
optimal solution. Simulation results demonstrate that we achieve
the minimum energy consumption under the premise of fairness
and the efficiency of model processing tasks.

Index Terms—Computing offloading, fairness, mobile-edge
computing (MEC), multiagent deep deterministic policy gradi-
ent (MADDPG), selectivity, trajectory optimization, unmanned
aerial vehicles (UAVs).

I. INTRODUCTION

W ITH the emergence of compute-intensive applications
(e.g., autonomous driving, traffic control, and auto-

matic navigation), the quality of experience (QoE) of mobile
users has improved significantly. However, due to the low com-
puting power and limited energy reserve of ground devices
(GDs), GDs experience great challenges [1]. Mobile-edge
computing (MEC) has emerged as a cutting-edge technology
to address these challenges. MEC’s main feature is to sink
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mobile computing to network edge nodes (e.g., base stations
and access points) to realize compute-intensive applications
on GDs with limited resources [2]. At the same time, exten-
sive Internet of Things (IoT) devices bring us convenience.
IoT based on unmanned aerial vehicles (UAVs) can make
full use of the air-to-ground (A2G) transmission channel and
line-of-sight (LoS) transmission link [3], which not only over-
comes geometric restrictions, but also provides reliable data
transmission service for remote areas and traffic intensive
areas [4]. Therefore, UAVs will play an important role in the
IoT vision [5].

In the multi-UAV-assisted wireless communication system,
UAVs usually play the role of an aerial base station (BS) or
aerial mobile terminal. When the UAVs are used as aerial
BS, the GDs communicate with the UAVs via the LoS link.
However, massive data transmission between GDs and UAVs
may cause channel congestion. When the UAVs are used as
aerial mobile terminals, a large number of UAVs will result
in the overload of the cellular network. Thus, the UAVs will
compete with GDs for limited spectrum resources [6].

UAVs as mobile-edge nodes to assist the MEC system have
recently gained increasing attention from academia and indus-
try. UAVs have the characteristics of high flexibility and strong
maneuverability and can be combined with wireless com-
munication systems to provide high-speed, large-connection,
and low-latency communication services. As mobile-edge
nodes, UAVs’ high mobility solves the deployment problem of
fixed-edge nodes; their hover stability and LoS transmission
characteristics provide GDs with reliable and low-latency com-
munication links [7]. In addition, multi-UAV-assisted MEC
systems have many unique advantages. For example, accord-
ing to the GDs’ real-time locations and tasks, UAVs can adjust
their locations and then carefully plan their trajectories based
on a given goal (e.g., saving energy or reducing latency). In
addition, due to factors such as obstacles, UAVs have a higher
probability of establishing LoS links with GDs due to their
variable heights, which can help strengthen and expand the
UAVs’ coverage [8].

In addition to the above application scenarios, UAVs have
also achieved research results in the latest scenarios. In the
field of intelligent reflecting surface (IRS), the advantages of
UAV and IRS can be combined to further improve commu-
nication performance. However, since the air-ground channel
between UAVs and GDs are vulnerable to adversarial eaves-
dropping, the covert communication of UAV-IRS is worth
considering [9]. When a disaster occurs and the BS no
longer works normally, the UAV-assisted network becomes an
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effective method to establish emergency communication. In
this scenario, the UAV can not only provide wireless services
for GDs, but also realize information exchange inside and
outside the disaster area [10].

A. Related Work

1) Computation Offloading and Resource Allocation:
Computation offloading can offload tasks to nearby MEC
servers to improve quality of service (QoS), which is insep-
arable from task scheduling and load balance. In [11], the
authors proposed a two-layer optimization method for jointly
optimizing UAVs deployment and task scheduling, where the
UAVs deployment is optimized by the upper layer and the
lower layer completed the task scheduling based on the given
UAVs deployment. Yang et al. [12] achieved a multi-UAV
load balancing while ensuring coverage constraints and sat-
isfying IoT node QoS. In addition, for the task scheduling
in a certain UAV, a deep reinforcement learning (DRL) algo-
rithm was designed to improve the task execution efficiency
of each UAV. Researchers often regard energy consumption
as the optimization goal of communication and computation.
Zhang et al. [13] optimized bit allocation, time slot scheduling,
power allocation, and UAV trajectory design by minimiz-
ing the total energy consumption (including communication,
computation, and UAV flight).

At the same time, resource allocation can reasonably dis-
tribute resources to GDs to avoid resource waste. In MEC
systems, resource allocation is often closely related to com-
putation offloading. Seid et al. [14] proposed a model-free
DRL-based collaborative resource allocation and computation
offloading scheme in an A2G network. Each UAV cluster
head took on the role of the agent and independently allo-
cated resources to Edge Internet of Things (EIoT) devices
in a decentralized fashion. Yu et al. [15] proposed an inno-
vative UAV-enabled MEC system in which UAV and edge
clouds (ECs) cooperated to provide MEC services for IoT
devices. The authors’ proposed system aimed to minimize the
weighted sum of service latency and UAV energy consumption
for all IoT devices by jointly optimizing UAV location, com-
munication, computing resource allocation, and task-splitting
decisions. Under the requirements of heterogeneous QoS, Peng
and Shen [16] used a multiagent deep deterministic policy
gradient (MADDPG) method to quickly make vehicle asso-
ciation and resource allocation decisions during the online
execution phase. Nie et al. [17] jointly optimized resource
allocation, user association, and power control in a MEC
system with multiple UAVs and proposed a multiagent fed-
erated reinforcement learning (RL) algorithm to protect the
GDs’ privacy.

2) Trajectory Design: The research on trajectory
optimization of UAVs is significant. It can not only reduce
the delay and save energy, but also improve the throughput
of communication and bring better QoS to GDs. In the 2-D
plane single UAV scenario, Ji et al. [18] minimized the
weighted energy consumption of UAV and GDs by joint UAV
trajectory and resource allocation. Due to the nonconvexity of
the problem, the authors alternately optimized the trajectory

and resource allocation in each iteration. In the 2-D plane
multi-UAV scenario, Qin et al. [19] minimized the task
completion time by optimizing the trajectories of all UAVs,
while ensuring the collection of information from each sensor.
The authors proposed a hover point selection algorithm, in
which UAVs sequentially collected information from multiple
sensors.

DRL could be an effective solution to tackle the UAV tra-
jectory. Due to the characteristics of large state dimensions
and complex actions in UAV communication scenarios, under
the framework of RL, the agents learn interactively with the
environment and explore the optimal strategy through “trial-
and-error.” At the same time, deep learning is introduced to
reasonably deal with the issue of large data dimensions. In the
multi-UAV scenario, the fairness between each UAV is particu-
larly significant. Yin and Yu [20] modeled resource allocation
and trajectory design as a decentralized partially observable
Markov decision process and proposed a novel distributed
multiagent RL framework for overall throughput optimization.
Wang et al. [21] jointly optimized the geographic fairness of
all GDs, the GDs-load fairness of each UAV, and the over-
all energy consumption of GDs by independently managing
each UAV trajectory. Qin et al. [22] described user-level fair-
ness based on proportional fair scheduling and formulated a
weighted throughput maximization problem by designing UAV
trajectory.

There have not been many research attempts on the 3-D
plane multi-UAV-assisted MEC scenario. Due to the com-
plexity of 3-D plane UAV movements, it is difficult to
obtain the optimal solution by using traditional algorithms.
Currently, there are only a few researchers using DRL to
solve the 3-D multi-UAV trajectory problem. Ding et al. [23]
formulated the energy consumption model of a quad-rotor
single UAV as a function of the 3-D motion of the sin-
gle UAV and achieved energy-efficient fair communication
and total throughput maximization through trajectory design
and frequency band allocation. In [24], efficient 3-D tra-
jectory design for multi-UAV was studied. A constrained
deep Q-network (cDQN) algorithm was proposed to solve the
multi-UAV 3-D dynamic movement problem.

B. Motivation and Contributions

Motivated by the advantages of UAV-assisted communi-
cation systems and the shortcoming of the existing work, a
multi-UAV-assisted MEC system is considered in this article.
This work aims to study the joint problems of communica-
tion, computation, and flight in the A2G cooperative paradigm,
thereby providing ideas for the future three-layer heteroge-
neous network of A2G [25]. Note that our research has
practical implications. In many practical scenarios, such as
communication interruption due to natural disasters or sudden
increase in traffic in hotspot areas (e.g., campuses and stadi-
ums, or areas where cellular infrastructure is unavailable [26]),
UAVs can be quickly deployed to those areas due to their
high mobility and flexibility compared to traditional terrestrial
base stations. A UAV-assisted MEC has become an efficient
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means to solve these problems. Therefore, it is necessary and
promising to study the multi-UAV-assisted MEC system.

Based on the existing literature mentioned above, we con-
sider a multi-GD and multi-UAV-assisted MEC system. On
the GD side, the optimal offloading strategy of each GD task
is studied. In addition, in order to avoid overload of UAV
caused by the excessive concentration of GDs, the selection
of optimal UAV for each GD is also investigated. On the UAV
side, how to find the optimal 3-D flight trajectory is studied
under the premise that each UAV process as many tasks as
possible with as little energy consumption and delay as pos-
sible. At the same time, the load fairness between each UAV
is also considered.

The main contributions of this article are listed as follows.
1) We design a dynamic scenario for real-time commu-

nication and data transmission. Specifically, each UAV
makes a series of flight actions, and each GD can offload
tasks and update its location during a UAV flight. At the
same time, we consider the GDs’ selectivity, that is, the
GDs offload tasks by selecting the most suitable UAVs to
achieve fairness between UAVs. In addition, each UAV
only knows the status information of the connected GDs,
which is more reasonable and practical.

2) We jointly optimize the offloading strategy, GDs’ selec-
tivity, and UAV trajectories design. Since there are too
many optimization variables involved, we theoretically
analyze some variables that can be optimized without
participating in the neural network. Specifically, first,
in the case of fixed trajectory actions, we derive and
prove the optimal offloading strategy and GDs’ selec-
tivity. Second, under the premise of optimal offloading
strategy and GDs’ selectivity, the MADDPG algorithm
is used to let each UAV act as an agent and complete the
common trajectory optimization through coordination
and cooperation between the agents.

3) Our approach has good convergence after theoretical
analysis to reduce the optimization variables. At the
same time, we achieve lower energy consumption under
the premise of better fairness. In addition, considering a
real scene, the 3-D UAV trajectories are more reasonable.

The remainder of this article is organized as follows.
Section II demonstrates the system model and problem for-
mulation. Section III introduces the theoretical analysis for the
offloading proportion and selection of GDs, and the MADDPG
algorithm for trajectory optimization. Section IV gives the sim-
ulation results. Section V presents the conclusion drawn from
this article’s research.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first present a 3-D dynamic multi-UAV-
assisted MEC system model. Then, the communication and
computation model of the system and the flight model of UAV
are proposed. Finally, under the premise of fairness based
on the load of each UAV, we formulate the problem as the
system’s total energy consumption including communication,
computation, and UAV flight. The main notations used in this
article are summarized in Table I.

TABLE I
LIST OF MAIN NOTATIONS

Fig. 1. System model of 3-D dynamic multi-UAV-assisted MEC.

A. Network Model

As shown in Fig. 1, we consider a cell with K GDs (with
set denoted by K) and M UAVs (with set denoted by M),
where each UAV is equipped with a small MEC server for
communication and computation. We consider the uplink of
GDs generating tasks to the UAVs by using time division
multiple access (TDMA). All GDs are randomly distributed
in the 3-D plane of {Xsize, Ysize, 0} and UAVs fly in the 3-D
plane of {Xsize, Ysize, H}. We consider three UAVs: 1) the main
UAV 1; 2) the main UAV 2; and 3) the auxiliary UAV. The
main UAVs are responsible for communication and computa-
tion with most GDs and have a fixed starting point and ending
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point. The auxiliary UAV is responsible for a small number
of GDs to reduce the pressure of the main UAVs and achieve
better load fairness among all UAVs. It is worth noting that the
main UAVs and the auxiliary UAV have the same structure,
but their respective roles, service objects, and flight trajectories
are different.

All UAVs complete a flight mission in T time slots (with
a set denoted by T ). In each time slot, UAVs complete the
tasks generated by the connected GDs. We assume that in
the next time slot, the locations and tasks of the GDs are
randomly updated within a certain range, and the GDs reselect
the optimal UAV according to its locations and tasks. After
a series of time slots and task processing, the UAVs fly from
the starting point to the terminal point to complete a trajectory
design. Therefore, in the tth slot, we define the location of the
mth UAV as Qm

uav(t) = {Xm(t), Ym(t), Zm(t)}, the location of
the kth GD as Qk

gd(t) = {xk(t), yk(t), 0}, and the task of the
kth GD as

χk(t) = {Dk(t), Fk(t)} ∀k ∈ K, t ∈ T (1)

where Dk(t) represents the amount of the kth GD’s data and
Fk denotes the number of the kth GD’s CPU cycles required
to process 1 bit of data.

B. Communication Model

In real-world scenarios, UAVs need to change their height
for better communication due to factors, such as obstacles and
obstructions. Thus, we consider the A2G path loss model [27]
that incorporates LoS and Non-LoS (NLoS).

Here, we only consider the task uplink and disregard the
downlink. In time slot t, the LoS connection probability
between the kth GD and the mth UAV is given by

pLoS
k,m (t) = 1

1+ ηaexp
(−ηb

(
θk,m − ηa

)) (2)

where ηa and ηb are the constants related to the type of
propagation environment and θk,m = arcsin([Zm(t)/dk,m(t)])
is the elevation angle at the GD side. In addition, dk,m(t) =
‖Qk

gd(t) − Qm
uav(t)‖ denotes the Euclidean distance between

the mth UAV and kth GD. Here, both GDs and UAVs need to
move within a certain range defined as

Qk
gd, Qm

uav ∈ {Xsize, Ysize, H}. (3)

Similarly, we can get the NLoS connection probability as
pNLoS

k,m (t) = 1− pLoS
k,m (t).

Accordingly, the mean path loss can be modeled as

Lξ
k,m(t) = LFS

k,m(t)+ ηξ (4)

where ξ refers to the propagation group and can be described
as LoS and NLoS. Also, LFS

k,m(t) = 20 log dk,m(t)+ 20 log fc+
20 log([4π/vc]) is the free space path loss between the kth GD
and mth UAV, while fc is the system frequency and vc denotes
the velocity of light. Thus, the path loss between the kth GD
and mth UAV is expressed as

Lk,m(t) = pLoS
k,m (t)LLoS

k,m (t)+ pNLoS
k,m (t)LNLoS

k,m (t)

= LFS
k,m(t)+ pLoS

k,m (t)ηLoS + pNLoS
k,m (t)ηNLoS (5)

where ηLoS and ηNLoS are the excessive path losses for LoS
and NLoS links.

Note that we do not discuss frequency band allocation here,
we assume that the bandwidth resource is equally allocated to
each GD. Therefore, the transmission data rate between the
kth GD and the mth UAV is given by

rk,m(t) = B log2

(

1+ Pk

δ2
010Lk,m/10

)

(6)

where B denotes the bandwidth equally allocated to each GD,
Pk represents transmit power of the kth GD, and δ2

0 is the noise
power.

Here, there are three offloading strategies for the kth GD
tasks: 1) without offloading (all tasks are processed on the GD
side); 2) partial offloading (some tasks are offloaded to the UAV
side); and 3) full offloading (all tasks are offloaded to the UAV
side), in which partial offloading needs to consider the offloading
proportion. We define the offloading strategy as

ϕk,m(t) =
⎧
⎨

⎩

0, without offloading
ϕk,m ∈ (0, 1), partial offloading
1, full offloading.

(7)

Thus, the transmission delay and energy consumption of the
kth GD communicating with the mth UAV are

TTra
k,m(t) = ϕk,m(t)Dk(t)

rk,m(t)
(8)

ETra
k,m(t) = PkTTra

k,m(t) = Pk
ϕk,m(t)Dk(t)

rk,m(t)
. (9)

C. Computation Model

The computation model is determined by the offloading
strategy. We design the offloading strategy ϕ as a continu-
ous value between [0, 1]. When it is equal to 0, the tasks are
all processed on the GD side, and all the tasks are processed
by the selected UAV when it is equal to 1, otherwise, ϕ repre-
sents the offloading proportion in the case of partial offloading.
Therefore, we can calculate the delay for computing at the kth
GD side as

TCom
k (t) =

(
1− ϕk,m(t)

)
Dk(t)Fk(t)

fk(t)
(10)

where fk denotes the kth GD’s computing resources. And the
computation delay at the mth UAV side is

TCom
k,m (t) = ϕk,m(t)Dk(t)Fm(t)

fk,m(t)
(11)

where Fm represents the number of CPU cycles required for
the mth UAV to process 1-bit data and fk,m is the computing
resources allocated by the mth UAV to the kth GD.

As such, we can obtain the computational energy con-
sumption of the GD side and the UAV side, respectively, as
follows

ECom
k (t) = Ka(fk(t))

3TCom
k (t)

= Ka
(
1− ϕk,m(t)

)
Dk(t)Fk(t)(fk(t))

2 (12)

ECom
k,m (t) = Kb

(
fk,m(t)

)3
TCom

k,m (t)

= Kbϕk,m(t)Dk(t)Fm(t)
(
fk,m(t)

)2 (13)
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Fig. 2. Trajectory of a single UAV from time slot t to t+1.

where Ka and Kb denote the CPU capacitance coefficients of
GDs and UAVs.

D. Flight Model

We model a 3-D quad-rotor flight model of UAVs, in which
we consider the flight velocity vector v, acceleration vector a,
vertical deflection angle θμ, and horizontal deflection angle θν

of each UAV. Similar to [23], we can describe the thrust of
each rotor of a single UAV as

F(v, a) = 1

n

∥
∥∥∥

(
mu‖a‖ + 1

2
ρv2Su

)
v− mug

∥
∥∥∥ (14)

where n denotes the number of rotors, mu is the weight of the
UAV, ρ is the air density, v = ‖v‖ represents the scalar size of
velocity, a = v/t represents the UAV’s variable acceleration
vector in time slot t, and Su and g are the equivalent plane
area of fuselage and the gravitational acceleration vector.

Thus, we refer to the energy consumption model for com-
puting the 3-D quad-rotor UAV flight trajectory in [23]. The
propulsion power of a single UAV is expressed as (15), shown
at the bottom of the page, where cr denotes the local blade
section drag coefficient, ct is the thrust coefficient based on
disk area, Ar represents the rotor disc area, sr is the rotor
solidity, and cf and dr are the incremental correction factor for
induced power and the fuselage drag ratio. In particular, θc is
the elevation angle of UAV, where θc is equal to (π/2) − θμ

as shown in Fig. 2.
Thus, the flight energy consumption of the mth UAV in time

slot t is

EFly
m (t) = Pfly

m (t)TFly
m (t)

= Pfly
m (t) ·max

⎧
⎨

⎩

⎡

⎣max
{
TTra

k,m(t) ∀k ∈ K′m
}

+
K′m∑

k=1

TCom
k,m (t)

⎤

⎦, max
{

TCom
k (t) ∀k ∈ K′m

}
⎫
⎬

⎭

(16)

where K′m and K′m represent the number and the set of GDs
that choose to offload the tasks to the mth UAV. It should be
noted that, we mainly study energy consumption. To avoid
resource waste, we assume that tasks are queued on the UAV
side. That is, when the first task is offloaded to the mth UAV,
the UAV uses all computing resources to process the task until
it is finished, and then processes the next task. Finally, we
take the larger value between the maximum time of processing
tasks on the GD side and the maximum time for transfer tasks
plus the total time of processing tasks on the UAV side as
the time required for the mth UAV to finish all connected GD
tasks in time slot t, expressed as TFly

m (t).

E. Problem Formulation

As shown in the system model, the main UAV 1 and UAV
2 are responsible for handling most of the GDs’ tasks, and the
auxiliary UAV is responsible for sharing the pressure of the
main UAVs to complete the task within the GDs’ tolerance
time. Based on Jain’s fairness index [28], we get the average
workload of the mth UAV with the connected GDs in time
slot t as follows

Cm(t) =
∑K′m

k=1 ϕk,m(t)

K
. (17)

According to the Cauchy inequality, we have

M∑

m=1

Cm(t)2
M∑

m=1

Cm(t)2 ≥
(

M∑

m=1

Cm(t)Cm(t)

)2

(18)

and take the equal sign when (C1(t)/C1(t)) = (C2(t)/C2(t)) =
· · · = (CM(t)/CM(t)). Here, we let C1(t) = C2(t) = · · · =
CM(t) = 1, then the Cauchy inequality becomes

M

(
M∑

m=1

Cm(t)2

)

≥
(

M∑

m=1

Cm(t)

)2

. (19)

Therefore, we apply the fairness index between UAVs as

I(t) =
(∑M

m=1 Cm(t)
)2

M
(∑M

m=1 Cm(t)2
) (20)

and I(t) = 1 when the average workload of each UAV is equal.
In this article, we aim to minimize the total energy con-

sumption of the entire system based on the offloading strategy,
the UAV’s selection by GDs, and multi-UAV 3-D trajectories.
First, the total system energy consumption of UAVs and GDs
in time slot t is given by

E(t) = 1

I(t)

⎡

⎣
M∑

m=1

K′m∑

k=1

(
ETra

k,m(t)+ ECom
k (t)+ ECom

k,m (t)
)

+
M∑

m=1

ωEFly
m (t)

]

∀k ∈ K′m, m ∈M, t ∈ T (21)

Pfly(v, F) = n

⎡

⎣cr

8

(
F

ctρAr
+ 3v2

)√
Fρs2

r Ar

ct
+ (1+ cf

)
F

(√
F2

4ρ2A2
r
+ v4

4
− v2

2

)0.5

+ 0.5drv3ρsrAr + mu‖g‖v
n

sin θc

⎤

⎦ (15)
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where ω is the weight of UAV flight energy.
Then, we formulate the optimization problem as

min
K′,�,�

T∑

t=1

E(t) (22a)

s.t. C1 : Qk
gd, Qm

uav ∈ {Xsize, Ysize, H} ∀k ∈ K, m ∈M
(22b)

C2 : 0 ≤ ϕk,m(t) ≤ 1 ∀k ∈ K, m ∈M, t ∈ T (22c)

C3 : vmin ≤ ‖v(t)‖ ≤ vmax ∀t ∈ T (22d)

C4 : Qm
uav(t) 	= Qm′

uav(t) ∀m, m′ ∈M, t ∈ T (22e)

C5 :
M∑

m=1

K′m = K ∀m ∈M (22f)

C6 : 0 ≤ I(t) ≤ 1 ∀t ∈ T (22g)

where K′ = {K′m ∀m ∈ M}, � = {ϕk,m(t) ∀k ∈ K, m ∈
M, t ∈ T }, � = {v(t), θμ(t), θν(t) ∀t ∈ T }. The objective
function (22a) is to minimize the total system energy con-
sumption of UAVs to complete a flight. Constraint (22b) is
that UAVs and GDs need to move within a certain range.
Constraint (22c) is the selectable range of the offloading
strategy. Constraints (22d) is the effective flight range of
the velocity scalar, and UAVs collision constraint is shown
as (22e). Constraint (22f) is the combination of GDs picking
UAV, where all GDs need to pick a UAV. The last con-
straint (22g) is the fairness index range between UAVs, the
closer it is to 1, fairer it is.

III. THEORETICAL ANALYSIS AND ALGORITHM DESIGN

In this section, we address the offloading strategy � of GDs’
tasks, the selectivity K′ of GDs to UAVs, and 3-D multi-UAV
flight trajectories � from theoretical analysis, mathematical
derivation, and algorithm demonstration.

We divide this section into three parts: first, as we know
� in time slot t, we prove the concavity and convexity of
K′ and � by mathematical derivation, respectively. Then, we
obtain the optimal offloading strategy � by the characteristics
of the increase and decrease function. At the same time, under
the premise of fairness between UAVs, the optimal selectivity
of GDs K′ can be obtained through algorithm iteration by
setting an initial value. Finally, while ensuring the optimality
of K′ and � in each time slot t, we use the multiagent DRL
algorithm to optimize the 3-D multi-UAV trajectories � in
T time slots with the goal of minimizing the system’s total
energy consumption.

A. Offloading Strategy

Given � in time slot t, we fix the selectivity K′ of GDs
to discuss the concavity and convexity of the optimal strat-
egy �. At this point, we simplify the energy consumption
problem (21) as

E(t) = I · [A� + B(1−�)+ C�

+ F ·max
{(
A′� + C′�

)
,B′(1−�)

}]
,

s.t. A = PTraA′,B = PCom
k B′, C = PCom

m C′

(23)

Fig. 3. Function of offloading strategy on energy consumption.

where I is the fairness coefficient between UAVs, P is the
power coefficient, and A, B, and C are the energy consump-
tion coefficient for transmission, computation on the GD side,
and computation on the UAV side. Similarly, we have F as the
flight power coefficient for UAVs, A′, B′, and C′ as the delay
coefficient for transmission, computation on the GD side, and
computation on the UAV side. We can see from (23) that
E(t) is a linear function of � and is derivable with extreme
value. As shown in Fig. 3, ϕ(t) and 1− ϕ(t) are the increas-
ing or decreasing functions of E(t), respectively. Therefore, to
minimize E(t), we only need

min
[
max

{(
A′� + C′�

)
,B′(1−�)

}]
(24a)

⇒ A′� + C′� = B′(1−�) (24b)

⇒ � = B′
A′ + B′ + C′ (24c)

to obtain the specific kth GD which selects the mth UAV’s
optimal offloading strategy defined as

ϕk,m(t) = Fk(t)fk,m(t)rk,m(t)

fk(t)fk,m(t)+ (Fk(t)fk,m(t)+ Fm(t)fk(t)
)
rk,m(t)

.

(25)

B. GDs’ Selectivity

Given � in time slot t, we discuss the GDs’ selectivity by
getting the optimal offloading strategy � of K GDs. The GDs’
selectivity is reflected in ensuring that all GDs can choose
one UAV and how many GDs choose UAV 1, UAV 2, or
auxiliary UAV. Here, we use the fairness index between UAVs
to judge the rationality of the GDs’ selectivity. Therefore, we
can simplify the energy consumption problem (21) as

E(t) = M
∑M

m=1

(
K′m

)2
(∑M

m=1 K′m
)2

M∑

m=1

K′m

[
G

r
(
dk,m(t)

)

]

+ J

s.t.
M∑

m=1

K′m = K′ ∀k ∈ K′m, m ∈M (26)

where r is the transmission data rate function of the Euclidean
distance dk,m(t), and G and J are the constants after fixing �

and �.
Since the number of GDs is constant in a communica-

tion interaction, the sum of elements in K′m is constant but
the combination of elements is variable. Thus, we can see
from (26) that (∂E/∂K′m) is present and continuous, that is,
E has an extreme value for K′m. At the same time, we find that
the Euclidean distance d(t) from GDs to UAVs is an important
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Algorithm 1: GDs’ Selectivity Based on Nash Equilibrium

Initialize GDs’ selectivity E(∗K) as choosing the nearest
UAV;
repeat

for k = 1 to K do
Keep the selectivity of other GDs unchanged and
compute the current optimal choice k of the
k-th GD and E(k,

∗−k);
if E(k,

∗−k) < E(∗K) then
Modify k to be the optimal choice for the
kth GD;
E(∗K) = E(k,

∗−k);
end

end
until No GD proposes its own better choice;

factor affecting the GDs’ selectivity. The mathematical proof
that GDs select reliable UAVs based on distance is given in
the Appendix. Here, we define the selectivity of K GDs as

∗K = {1,2, . . . ,k, . . . ,K} (27)

and the selectivity of other GDs except the kth GD is

∗−k = {1,2, . . . , k−1,k+1, . . . ,K}. (28)

Therefore, the preference basis for GD k to make an
individual selection k can be expressed as

min E
(
k,

∗−k

)
. (29)

For any GD, when in the Nash equilibrium state, if k is
changed and ∗−k is unchanged, the energy consumption value
E will not be smaller. That is because a sufficiently rational
GD has no reason to break the Nash equilibrium if other GDs’
selectivity remains the same.

Definition 1: The selectivity set of K GDs is a Nash
equilibrium of the game process, if satisfied

E
(
∗K
) ≤ E

(
k,

∗−k

) ∀k ∈ K. (30)

According to Definition 1, when in Nash equilibrium
state, the GDs’ selectivity is the best and also achieves E
minimization in time slot t. The pseudo code of the GDs’
selectivity algorithm is given in Algorithm 1.

C. MADDPG Algorithm

In our designed communication model, the state and action
dimensions of UAVs and GDs are too large. It is diffi-
cult for traditional algorithms to obtain the optimal solution.
The MADDPG algorithm is an effective method to solve
multiagent continuous actions in DRL. Here, we first define a
Markov decision process to describe the key quantities in RL.
Then the MADDPG algorithm is combined with our proposed
communication model to obtain the optimal solution.

1) Markov Decision Process Formulation: We consider
each UAV as an agent and define a Markov decision process to
describe the environment model as (S, A,T, R, S0). The details
of the definition are as follows.

a) States: Consisted by the states of each agent and GDs.
It mainly includes the locations of UAVs, the locations of GDs,
the amount of data of GDs, and the number of CPU cycles
required to compute 1-bit data of GDs connected to the mth
UAV. In summary, the states of m-agent can be formulated as

S =
{

Qm
uav(t), Qk

gd(t), Dk(t), Fk(t)

∀k ∈ K′m, m ∈M, t ∈ T
}
. (31)

Note that in different time slots, the above four states are
changing, which means that the GDs are moving and gen-
erating new tasks, and are more in line with reality.

b) Actions: We define the UAV’s velocity, horizontal
deflection angle and vertical deflection angle as the actions
of each agent, denoted by

A =
{
ζvm(t), ζm

θν
(t), ζm

θμ
(t) ∀m ∈M, t ∈ T

}
(32)

where ζvm(t), ζm
θν

(t), ζm
θμ

(t) ∈ [0, 1]. As shown in Fig. 2,
we consider spherical coordinates (v, θν, θμ) and apply the
normalized representation for the mth agent’s actions as

vm(t) = ζvm(t) · vmin + (vmax − vmin)

θm
ν (t) =

⎧
⎪⎨

⎪⎩

ζm
θν

(t) · π
2 , m = 1

ζm
θν

(t) · π, m = 2(
ζm
θν

(t)+ 1
)
· π

2 , m = 3

θm
μ (t) = ζm

θμ
(t) · π (33)

where vmin and vmax are the minimum and maximum speed
of the UAVs. The horizontal deflection angle θm

ν ranges of the
three UAVs are: [0, (π/2)], [0, π ], and [(π/2), π ], which are
given in Section IV. Similarly, the vertical deflection angle θm

μ

ranges of the three UAVs belong to [0, π ].
c) Transition probability: T = {p(s′|s, a) ∀ s, s′ ∈

S, a ∈ A} represents the transition probability from states
s = [s1, . . . , sM] to the next states s′ = [s′1, . . . , s′M] through
actions a = [a1, . . . , aM].

d) Rewards: Based on (21), under the premise of ensur-
ing fairness and optimal offloading strategy, the sum of energy
consumption of all agents in T time slots is defined as
Rewards. To reflect the rationality of the Rewards, we define
the negative value of energy consumption as

R = −
T∑

t=1

E(t). (34)

To satisfy (22b) and (22e), we set penalty rewards as

R = R− Rbad, if Qm
uav /∈ {Xsize, Ysize, H}

R = R− R′bad, if Qm
uav = Qm′

uav. (35)

e) Initial states: We assume that each UAV completes a
flight trajectory from the starting point to the terminal point
and then returns to the starting point for training until the
rewards converge.
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2) MADDPG-Based 3-D UAVs-GDs Trajectory
Optimization Approach: In our proposed approach, we
adopt the framework of centralized training and distributed
execution. During the training phase, the critic network of
each agent collects the states and actions of all agents and
generates a Q value, but the actor network of each agent
makes decisions by its own partial state. We extend the
critic network to learn from other agents’ policies, so each
agent performs a function approximation to the other agents’
policies. Thus, we express the transition probability as

P
(
s′|s, a, μ

) = P
(
s′|s, a

) = P
(
s′|s, a, μ′

)
(36)

where μ = [μ1, . . . , μM] denote the deterministic policies
of M agents in actor policy network and μ′ = [μ′1, . . . , μ′M]
denote the deterministic policies of M agents in target policy
network. We use θ = [θ1, . . . , θM] to denote the parameters of
the deterministic policies μ in actor policy network. For the
cumulative expected reward for the mth agent, we have

J(θm) = Es,a∼D

[
T∑

t=1

γ rm,t

]

(37)

where D represents the experience reply buffer included
{s, a, r, s′, done}, r = [r1, . . . , rM] is the set of all agents’
reward, done is the termination condition (the UAVs reach
the end or fly out of the border), and γ denotes the rewards
discount factor. For the deterministic policies μ, we have the
policy gradient

∇θmJ(θm) = Es,a∼D
[∇θmμm(am | sm)∇amQμ

m(s, a)|am=μm(sm)

]

(38)

where Qμ
m represents the centralized action-value function out-

put by the critic network based on the states and actions of all
agents as input. Qμ

m is used to evaluate the quality of the actor-
network output strategy. We update the critic policy network
Qμ

m by minimizing the loss function as

L(θm) = Es,a,r,s′
[(

Qμ
m(s, a)− y

)2] (39)

where the target value y is

y =
T∑

t=1

rm,t + (1− done) · γ Qμ′
m

(
s′, a′

)|a′m=μ′m(s′m) (40)

where a′ = [μ′1(s′1), . . . , μ′M(s′M)] is the set of actions of M

agents and Qμ′
m represents the target network based on the

set of deterministic policies μ′ with delayed parameters θ ′ =
[θ ′1, . . . , θ ′M]. The delayed parameters θ ′ can be updated by

θ ′m ← τθm + (1− τ)θ ′m (41)

where τ is the soft update coefficient.
Due to the unbalanced problem of the 3-D multi-UAV envi-

ronment, the agent’s policy may overfit the actions of other
agents. Thus, when the other agents’ policies change, the
agent’s policy may be invalid. Based on [29], we train an
ensemble of U different policies denoted as μ

(u)
m . For the mth

agent, the objective function changes from (37) as

J(μm) = Eu∼unif(1,U), s,a∼D(u)

[
T∑

t=1

γ rm,t

]

. (42)

Fig. 4. Optimization process of the MADDPG algorithm based on GDs’
optimal offloading strategy and UAVs’ fairness.

Similarly, the corresponding policy gradient changes from (38)
to

∇
θ

(u)
m

J(μm) = 1

U
Es,a∼D(u)

[
∇

θ
(u)
m

μ(u)
m (am | sm)∇am Qμ

m(s, a)|
am=μ

(u)
m (sm)

]
.

(43)

As shown in Fig. 4, we give the optimization process of the
mth agent (other agents and so on) in the MADDPG algorithm
based on the optimal offloading strategy of GDs and the fair-
ness of UAVs. The total pseudo code of the MADDPG-based
3-D UAVs-GDs trajectory optimization algorithm is shown in
Algorithm 2.

IV. SIMULATION RESULTS

In this section, we present the simulation results of the joint
offloading strategy, GDs’ selectivity, and UAV trajectories.

A. Simulation Settings

We consider GDs and UAVs moving in a 1000 m × 1000 m
horizontal plane, and UAVs flying at altitudes ranging from
100 to 500 m. Furthermore, we set three UAVs and ten GDs
as a reference, among which UAV 1 and UAV 3 are the main
UAVs, and UAV 2 is the auxiliary UAV. The flight trajectory
of UAV 1 is from the starting point (0 m, 0 m, 100 m) to the
terminal point (1000 m, 1000 m, 100 m), the flight trajectory
of UAV 3 is from the starting point (1000 m, 0 m, 100 m) to
the terminal point (0, 1000 m, 100 m), and the flight trajec-
tory of UAV 2 is from the starting point (500 m, 0 m, 100 m)
to the terminal point (x m, 1000 m, 100 m), where x repre-
sents the horizontal abscissa that the auxiliary UAV 2 finally
stops. The speed size v and the vertical deflection angle θμ of
all UAVs are limited to [30, 50 m/s] and [0, π ]. The horizontal
deflection angle θν ranges of the three UAVs are: 1) [0, (π/2)];
2) [0, π ]; and 3) [(π/2), π ]. All UAVs properly adjust their
flight heights due to factors, such as LoS and NLoS of com-
munication with GDs. As for GDs, we allow the locations of
GDs to move within ± 50 m in each time slot and the task χ

of each GD is also updated synchronously.
The simulation results are performed with Python 3.7,

parl 2.0.4, and paddlepaddle 2.3. The MADDPG algorithm
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Algorithm 2: MADDPG-Based 3-D UAVs-GDs
Trajectory Optimization

Initialize actor policy network μ, target policy network
μ′ with weights θ , θ ′ for all agents;
Initialize replay memory as rpm;
for episode ep = 1 to max_episode do

Randomly generate a random process N for actions
exploration and limit the output to [0, 1];
Initialize the state s0 and step = 0;
while done = False do

step = step+ 1;
Select actions am = μm(sm; θm)+Nstep for each
agent m;
for all agents do

Enter all agents’ states s and actions a into
the environment;
Execute Algorithm 1: The GDs’ selectivity
based on Nash equilibrium (with the optimal
offloading strategy);

end
Obtain all agents’ rewards r and next states s′ by
actions a = [a1, . . . , aM] (with movement and
task change of GDs);
Store (s, a, r, s′, done) in rpm;
for agent m = 1 to M do

Sample a random batch of S as
{(sj, aj, rj, s′j, donej),∀j ∈ S} from rpm;
Set the target value yj as (40);
Update critic by minimizing the loss:
L(θm) = 1

S

∑S
j=1

(
Q
(
sj, aj − yj

)2)
;

Update the actor policy using (38):
1
S

∑S
j=1 ∇θmJ(θm);

end
Update the parameters of target network for each
agent m: θ ′m ← τθm + (1− τ)θ ′m;
for all UAVs do

if UAV m reaches the end then
donem = True;
R =∑step

t=1 r(t);
end
else if UAV m flies out of bounds or collides
then

donem = True;
R =∑step

t=1 r(t)− Rbad/R′bad;
end
done = all[done1, . . . , doneM]

end
end

end

parameters are as follows: 1) actor–critic network learning
rate lr = 0.0001; 2) reward discount factor γ = 0.9; 3) soft
update coefficient τ = 0.01; and 4) randomly extracting data
batch size batch_size = 512. The actor–critic networks are
constructed by using two fully connected layers with 100
neurons in each layer. For the unity and convergence of the

TABLE II
SIMULATION PARAMETERS

dB

dB

model, we uniformly set the input dimension of the actor
network to 3 + 5 × K, where “3” denotes the dimension
of single agent (UAV) location, “5” means the dimension
of single GD location and task, and “K” means the num-
ber of GDs. Likewise, the input dimension of the critic
network is M × (3 + 5 × K) + M × 3, which includes
M agents (UAVs) states and actions. As for a single agent,
since the GDs connected to a single UAV are only a part
of all GDs, we zero-padded the part of insufficient input
dimension to fit the network input when inputting normal-
ized observations. The communication, computation, and UAV
flight-related simulation parameters are shown in Table II.

B. Performance and Analysis

To the best of our knowledge, there is no existing work for
the communication scenarios we consider and the problems
we study; thus, we cannot compare our research with other
works.

Under fixed GDs’ selectivity and UAV trajectories, we com-
pare average and random offloading with our proposed optimal
offloading.

1) Average Offload: We evenly distribute half of the GDs’
tasks to the GD side for computation and the other half
to the UAV side, that is ϕ = 0.5.

2) Random Offload: We randomly generate offloading strat-
egy between 0 and 1.

As shown in Fig. 5, after 25 000 rounds of training, the
fairness of UAVs based on the optimal offloading strategy
converges to 0.95. Note that our test remains converged after
40 000 episodes of training. Although random offloading can
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Fig. 5. Fairness comparison of different offloading strategies.

Fig. 6. Fairness comparison of different GDs’ selectivity.

also converge to 0.9 due to its randomness, the fairness is not
as good as our proposed offloading method. Since the task
sizes of GDs vary per slot, average offloading does not apply.
For different states of GDs and UAVs, a reasonable selection
of offloading strategy can ensure the fairness of UAVs and
minimize energy consumption which will be discussed next
in this article.

Under fixed offloading strategy and UAV trajectories, we
compare the GDs’ random selection of UAV and the prefer-
ential selection of the nearest UAV with our proposed Nash
equilibrium-based GDs’ selectivity.

1) Random Selection: All GDs randomly select one of the
three UAVs for task offloading.

2) Nearest Selection: All GDs prefer the UAV closest to
them.

Fig. 6 shows the fairness between UAVs corresponding to
three different GDs’ selections. We can see that after 10 000
rounds of training, the selection of GDs based on Nash equi-
librium converges to about 0.92, indicating that the GDs’

Fig. 7. Training rewards with different learning rates and discount factors.

Fig. 8. Training rewards for each agent and all agents.

selection of UAV has reached a Nash equilibrium state and
the total energy consumption of the system at this time is the
smallest. Similarly, since we use a uniform random distribu-
tion, when GDs randomly select UAVs, stable fairness can
always be maintained between UAVs, but the fairness is not
optimal at this time. When the GDs are concentrated near a
certain UAV, the adoption of the nearest selection leads to a
situation where a certain UAV is overloaded and other UAVs
are idle, so the fairness is poor.

Fig. 7 shows the effect of different network parameters on
the training rewards. As we can see, on the one hand, when
the learning rate lr = 0.0001, the change of γ only slightly
affects the convergence speed of rewards, but does not affect
the convergence value. On the other hand, when the discount
factor γ = 0.95, the change of lr not only affects the conver-
gence speed of rewards, but also affects the convergence value
or even does not converge.

In Fig. 8, we give the training reward of each agent (UAV).
As mentioned above, UAV 2 acts as an auxiliary UAV to share
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Fig. 9. Impact of the presence or absence of auxiliary UAV on the system.
(a) Total energy consumption of the system with different number of UAVs.
(b) Average delay of processing a task with different number of UAVs.
(c) Number of tasks processed in one flight with or without auxiliary UAV.

the load of the main UAV 1 and UAV 3, so its energy con-
sumption is smaller after reaching equilibrium. Since UAV 1
and UAV 3 fly similar distances, they have similar energy con-
sumption. As we can see from Fig. 8, the rewards of all agents
converge after about 20 000 rounds of training, and we take
the sum of the rewards of all agents as the total reward of
the system. Note that, for conceptual rationality, the negative
value of rewards here is energy consumption.

Fig. 9 shows the impact of the presence or absence of aux-
iliary UAV on various indicators of the system. Our proposed
model is represented by “three UAVs”, and “two UAVs” model
is the case without the auxiliary UAV. As shown in Fig. 9(a),
the total energy consumption of the system is higher than that
of unassisted UAVs due to the additional flight energy con-
sumption required for adding auxiliary UAVs. We can see
from Fig. 9(b) that the efficiency of handling all GDs once
tasks with the auxiliary UAV is significantly higher than that
without the auxiliary UAV. This is because multiple UAVs

Fig. 10. UAV trajectories with different GDs distributions. (a) UAV trajec-
tories with random distributions of GDs. (b) UAV trajectories with skewed
distributions of GDs. (c) UAV trajectories with concentrated distributions of
GDs. (d) UAV trajectories with scattered distributions of GDs.

can work together to complete tasks faster. In Fig. 9(c), we
present the number of GDs’ tasks handled by each UAV in
one flight cycle. It can be seen that under our proposed coop-
erative model, although the energy consumption is higher than
that of the model without an auxiliary UAV, the number of
tasks processed in the same flight cycle is much higher. In our
proposed cooperative model, all UAVs handle about 130 tasks
and about 67 tasks for the model without the auxiliary UAV.

In Fig. 10, we show the UAV trajectories with different GDs
distributions, where the green line represents the trajectory of
UAV 1, the blue line is the trajectory of auxiliary UAV 2, the
yellow line is the trajectory of UAV 3, the black lines repre-
sent the movement trajectories of the GDs (10 in total), and
the corresponding points are the starting and terminal points.
It should be noted that it is difficult to show the UAV 3 flight
trajectory due to the 3-D graphics. We can see from Fig. 10(a)
that when the GDs are randomly distributed, UAVs typically
first ascend to a moderate height and then descend. As shown
in Fig. 10(b), when some GDs are located in remote loca-
tions, UAVs close to these GDs preferentially fly to them. In
Fig. 10(c), when the GDs are concentrated, UAVs fly at lower
altitudes to save energy because they do not have to com-
municate over long distances. Similarly, in Fig. 10(d), when
the GDs are dispersed, UAVs fly at higher altitudes for better
communication visibility. Therefore, in our designed trajec-
tory algorithm, UAVs adjust their flight trajectories according
to the state information of GDs.

V. CONCLUSION

In this article, we designed a 3-D dynamic multi-UAV-
assisted MEC system model. Specifically, we studied 3-D
cooperative trajectories of multiple UAVs. In each time slot,
GDs were characterized by mobility, task update, and so forth.
In this system model, we separately discussed the offloading
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strategy, GDs’ selectivity, and multi-UAV trajectories. In a sin-
gle time slot t, we obtained feasible solutions for the task
offloading strategy and UAV’s selection for each GD from
theoretical analysis, mathematical derivation, and algorithm
verification. In a complete time slot T , we took advantage of
DRL to solve the multi-UAV cooperative trajectory problem
based on the MADDPG algorithm. Finally, we minimized the
energy consumption of the entire system (including communi-
cation, computation, and flight) while ensuring fairness among
UAVs. The simulation results also proved the rationality and
effectiveness of our algorithm.

In future work, we will investigate multi-UAV communica-
tions between multicell and more novel trajectory designs.

APPENDIX

GDS SELECT UAVS BASED ON DISTANCE

In this Appendix, we present the effect of the distance
between GDs and UAVs on energy consumption. Based
on (26), we show in Section III-B that the target value for
GDs’ selectivity is differentiable and has extreme values. Thus,
we simplify (26) as a function of E versus d and show it as

E(t) = K
′
[ G

r(d(t))

]
+ J (44)

where K
′ represents optimal GDs’ selectivity coefficient. Here,

we express the transmission data rate r in another way as

r(d(t)) = B log2

(

1+ Pkβ0

δ2
0d(t)

)

(45)

where β0 denotes the channel gain of 1-m reference distance.
Then, (44) can be described as

E(t) = K
′
⎡

⎣ G
B log2

(
1+ 1

d(t)

)

⎤

⎦+ J (46)

where B is the coefficient of channel gain. We take the
derivative of d as

∂E

∂d
= K

′G

B ln 2
[
log2

(
1+ 1

d

)]2
d(1+ d)

. (47)

Obviously, (∂E/∂d) > 0, we consider E versus d to be a
monotonically increasing function. Therefore, we choose the
nearest UAV as the initial value of GDs’ selectivity. Then, the
game is played until the Nash equilibrium state is reached.

REFERENCES

[1] F. Zhou, R. Q. Hu, Z. Li, and Y. Wang, “Mobile edge computing in
unmanned aerial vehicle networks,” IEEE Wireless Commun., vol. 27,
no. 1, pp. 140–146, Feb. 2020.

[2] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A sur-
vey on mobile edge computing: The communication perspective,” IEEE
Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 4th Quart., 2017.

[3] L. Liu, A. Wang, G. Sun, and J. Li, “Multiobjective optimization for
improving throughput and energy efficiency in UAV-enabled IoT,” IEEE
Internet Things J., vol. 9, no. 20, pp. 20763–20777, Oct. 2022.

[4] A. Meng, X. Gao, Y. Zhao, and Z. Yang, “Three-dimensional tra-
jectory optimization for energy-constrained UAV-enabled IoT system
in probabilistic LoS channel,” IEEE Internet Things J., vol. 9, no. 2,
pp. 1109–1121, Jan. 2022.

[5] N. H. Motlagh, T. Taleb, and O. Arouk, “Low-altitude unmanned aerial
vehicles-based Internet of Things services: Comprehensive survey and
future perspectives,” IEEE Internet Things J., vol. 3, no. 6, pp. 899–922,
Dec. 2016.

[6] P. Zhang, C. Wang, C. Jiang, and A. Benslimane, “UAV-assisted multi-
access edge computing: Technologies and challenges,” IEEE Internet
Things Mag., vol. 4, no. 4, pp. 12–17, Dec. 2021.

[7] Z. Liu, Y. Cao, P. Gao, X. Hua, D. Zhang, and T. Jiang, “Multi-
UAV network assisted intelligent edge computing: Challenges and
opportunities,” China Commun., vol. 19, no. 3, pp. 258–278, Mar. 2022.

[8] Y. Xu, T. Zhang, Y. Liu, D. Yang, L. Xiao, and M. Tao, “UAV-
assisted MEC networks with aerial and ground cooperation,” IEEE
Trans. Wireless Commun., vol. 20, no. 12, pp. 7712–7727, Dec. 2021.

[9] C. Wang et al., “Covert communication assisted by UAV-IRS,” IEEE
Trans. Commun., vol. 71, no. 1, pp. 357–369, Jan. 2023.

[10] N. Zhao et al., “UAV-assisted emergency networks in disasters,” IEEE
Wireless Commun., vol. 26, no. 1, pp. 45–51, Feb. 2019.

[11] Y. Wang, Z.-Y. Ru, K. Wang, and P.-Q. Huang, “Joint deployment and
task scheduling optimization for large-scale mobile users in multi-UAV-
enabled mobile edge computing,” IEEE Trans. Cybern., vol. 50, no. 9,
pp. 3984–3997, Sep. 2020.

[12] L. Yang, H. Yao, J. Wang, C. Jiang, A. Benslimane, and Y. Liu, “Multi-
UAV-enabled load-balance mobile-edge computing for IoT networks,”
IEEE Internet Things J., vol. 7, no. 8, pp. 6898–6908, Aug. 2020.

[13] T. Zhang, Y. Xu, J. Loo, D. Yang, and L. Xiao, “Joint computation and
communication design for UAV-assisted mobile edge computing in IoT,”
IEEE Trans. Ind. Informat., vol. 16, no. 8, pp. 5505–5516, Aug. 2020.

[14] A. M. Seid, G. O. Boateng, S. Anokye, T. Kwantwi, G. Sun, and G. Liu,
“Collaborative computation offloading and resource allocation in multi-
UAV-assisted IoT networks: A deep reinforcement learning approach,”
IEEE Internet Things J., vol. 8, no. 15, pp. 12203–12218, Aug. 2021.

[15] Z. Yu, Y. Gong, S. Gong, and Y. Guo, “Joint task offloading and
resource allocation in UAV-enabled mobile edge computing,” IEEE
Internet Things J., vol. 7, no. 4, pp. 3147–3159, Apr. 2020.

[16] H. Peng and X. Shen, “Multi-agent reinforcement learning based
resource management in MEC- and UAV-assisted vehicular networks,”
IEEE J. Sel. Areas Commun., vol. 39, no. 1, pp. 131–141, Jan. 2021.

[17] Y. Nie, J. Zhao, F. Gao, and F. R. Yu, “Semi-distributed resource
management in UAV-aided MEC systems: A multi-agent federated
reinforcement learning approach,” IEEE Trans. Veh. Technol., vol. 70,
no. 12, pp. 13162–13173, Dec. 2021.

[18] J. Ji, K. Zhu, C. Yi, and D. Niyato, “Energy consumption minimization
in UAV-assisted mobile-edge computing systems: Joint resource allo-
cation and trajectory design,” IEEE Internet Things J., vol. 8, no. 10,
pp. 8570–8584, May 2021.

[19] Z. Qin, A. Li, C. Dong, H. Dai, and Z. Xu, “Completion time
minimization for multi-UAV information collection via trajectory plan-
ning,” Sensors, vol. 19, no. 18, p. 4032, 2019.

[20] S. Yin and F. R. Yu, “Resource allocation and trajectory design in UAV-
aided cellular networks based on multiagent reinforcement learning,”
IEEE Internet Things J., vol. 9, no. 4, pp. 2933–2943, Feb. 2022.

[21] L. Wang, K. Wang, C. Pan, W. Xu, N. Aslam, and L. Hanzo, “Multi-
agent deep reinforcement learning-based trajectory planning for multi-
UAV assisted mobile edge computing,” IEEE Trans. Cogn. Commun.
Netw., vol. 7, no. 1, pp. 73–84, Mar. 2021.

[22] Z. Qin, Z. Liu, G. Han, C. Lin, L. Guo, and L. Xie, “Distributed
UAV-BSs trajectory optimization for user-level fair communication ser-
vice with multi-agent deep reinforcement learning,” IEEE Trans. Veh.
Technol., vol. 70, no. 12, pp. 12290–12301, Dec. 2021.

[23] R. Ding, F. Gao, and X. S. Shen, “3D UAV trajectory design and
frequency band allocation for energy-efficient and fair communica-
tion: A deep reinforcement learning approach,” IEEE Trans. Wireless
Commun., vol. 19, no. 12, pp. 7796–7809, Dec. 2020.

[24] W. Zhang, Q. Wang, X. Liu, Y. Liu, and Y. Chen, “Three-dimension
trajectory design for multi-UAV wireless network with deep reinforce-
ment learning,” IEEE Trans. Veh. Technol., vol. 70, no. 1, pp. 600–612,
Jan. 2021.

[25] J. Wang, C. Jiang, Z. Wei, C. Pan, H. Zhang, and Y. Ren, “Joint UAV
hovering altitude and power control for space–air–ground IoT networks,”
IEEE Internet Things J., vol. 6, no. 2, pp. 1741–1753, Apr. 2019.

[26] H. Wang, G. Ding, F. Gao, J. Chen, J. Wang, and L. Wang, “Power con-
trol in UAV-supported ultra dense networks: Communications, caching,
and energy transfer,” IEEE Commun. Mag., vol. 56, no. 6, pp. 28–34,
Jun. 2018.

[27] A. Al-Hourani, S. Kandeepan, and S. Lardner, “Optimal LAP altitude
for maximum coverage,” IEEE Wireless Commun. Lett., vol. 3, no. 6,
pp. 569–572, Dec. 2014.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 23,2023 at 04:35:47 UTC from IEEE Xplore.  Restrictions apply. 



HE et al.: FAIRNESS-BASED 3-D MULTI-UAV TRAJECTORY OPTIMIZATION IN MULTI-UAV-ASSISTED MEC SYSTEM 11395

[28] R. Jain, A. Durresi, and G. Babic, “Throughput fairness index: An expla-
nation,” ATM Forum Contribution, Mountain View, CA, USA, document
99-0045, Feb. 1999.

[29] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-
agent actor-critic for mixed cooperative-competitive environments,”
2017, arXiv:1706.02275.

Yejun He (Senior Member, IEEE) received the
Ph.D. degree in information and communication
engineering from the Huazhong University of
Science and Technology, Wuhan, in 2005.

From 2005 to 2006, he was a Research
Associate with the Department of Electronic and
Information Engineering, Hong Kong Polytechnic
University, Hong Kong. From 2006 to 2007, he
was a Research Associate with the Department
of Electronic Engineering, Faculty of Engineering,
Chinese University of Hong Kong, Hong Kong. In

2012, he was a Visiting Professor with the Department of Electrical and
Computer Engineering, University of Waterloo, Waterloo, ON, Canada. From
2013 to 2015, he was an Advanced Visiting Scholar (Visiting Professor)
with the School of Electrical and Computer Engineering, Georgia Institute of
Technology, Atlanta, GA, USA. Since 2011, he has been a Full Professor with
the College of Electronics and Information Engineering, Shenzhen University,
Shenzhen, China, where he is the Director of Guangdong Engineering
Research Center of BS Antennas and Propagation, and the Director of
Shenzhen Key Laboratory of Antennas and Propagation, Shenzhen. He was
selected as the Pengcheng Scholar Distinguished Professor, Shenzhen, and
the Minjiang Scholar Chair Professor of Fujian Province, China, in 2020 and
2022, respectively. He has authored or coauthored over 260 research papers,
seven books, and holds about 20 patents. His research interests include wire-
less communications, antennas, and radio frequency.

Dr. He was also a recipient of the Shenzhen Overseas High-Caliber
Personnel Level B (Peacock Plan Award B) and Shenzhen High-Level
Professional Talent (Local Leading Talent). He received the Shenzhen
Science and Technology Progress Award in 2017 and the Guangdong
Provincial Science and Technology Progress Award two times in 2018
and 2023. He is currently the Chair of IEEE Antennas and Propagation
Society-Shenzhen Chapter and obtained the 2022 IEEE APS Outstanding
Chapter Award. He has served as a Reviewer for various journals, such
as the IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, the IEEE
TRANSACTIONS ON COMMUNICATIONS, the IEEE TRANSACTIONS ON

INDUSTRIAL ELECTRONICS, the IEEE TRANSACTIONS ON ANTENNAS

AND PROPAGATION, the IEEE WIRELESS COMMUNICATIONS, the IEEE
COMMUNICATIONS LETTERS, the International Journal of Communication
Systems, Wireless Communications and Mobile Computing, and Wireless
Personal Communications. He has also served as a Technical Program
Committee Member or a Session Chair for various conferences, including
the IEEE Global Telecommunications Conference, the IEEE International
Conference on Communications, the IEEE Wireless Communication
Networking Conference, and the IEEE Vehicular Technology Conference. He
served as the TPC Chair of IEEE ComComAp 2021, the General Chair of
IEEE ComComAp 2019, the TPC Co-Chair of WOCC 2023/2022/2019/2015,
and the Organizing Committee Vice Chair of the International Conference on
Communications and Mobile Computing 2010. He acted as the Publicity Chair
of several international conferences, such as the IEEE PIMRC 2012. He is
the Principal Investigator for over 30 current or finished research projects,
including the National Natural Science Foundation of China, the Science
and Technology Program of Guangdong Province, and the Science and
Technology Program of Shenzhen City. He is serving as an Associate Editor of
IEEE TRANSACTIONS ON MOBILE COMPUTING, IEEE TRANSACTIONS ON

ANTENNAS AND PROPAGATION, IEEE Antennas and Propagation Magazine,
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, International
Journal of Communication Systems, China Communications, as well as
Wireless Communications and Mobile Computing. He served as an Associate
Editor of Security and Communication Networks and IEEE NETWORK. He is
a Fellow of IET, a Senior Member of the China Institute of Communications,
as well as a Senior Member of the China Institute of Electronics.

Youhui Gan is currently pursuing the M.S. degree in
electronics and communication engineering with the
College of Electronics and Information Engineering,
Shenzhen University, Shenzhen, China.

His research interests include wireless communi-
cations and mobile-edge computing.

Haixia Cui (Senior Member, IEEE) received the
M.S. and Ph.D. degrees in communication engineer-
ing from South China University of Technology,
Guangzhou, China, in 2005 and 2011, respectively.

She is a Full Professor with the School of
Electronics and Information Engineering, South
China Normal University, Foshan, China, and also
with the School of Physics and Telecommunication
Engineering, South China Normal University,
Guangzhou. From July 2014 to July 2015, she vis-
ited the Department of Electrical and Computer

Engineering, The University of British Columbia, Vancouver, BC, Canada,
as a Visiting Scholar. Her research interests are in the areas of cooperative
communication, wireless resource allocation, 5G/6G, and antennas.

Mohsen Guizani (Fellow, IEEE) received the B.S.
(with Distinction), M.S., and Ph.D. degrees in
electrical and computer engineering from Syracuse
University, Syracuse, NY, USA in 1985, 1987, and
1990, respectively.

He is currently a Professor of Machine Learning
and the Associate Provost with the Mohamed Bin
Zayed University of Artificial Intelligence, Abu
Dhabi, UAE. Previously, he worked in different insti-
tutions in the USA. He has authored ten books and
more than 800 publications. His research interests

include applied machine learning and artificial intelligence, Internet of Things,
intelligent autonomous systems, smart city, and cybersecurity.

Dr. Guizani was listed as a Clarivate Analytics Highly Cited Researcher
in Computer Science in 2019, 2020, and 2021. He has won several research
awards, including the 2015 IEEE Communications Society Best Survey Paper
Award, the Best ComSoc Journal Paper Award in 2021 and five Best Paper
Awards from ICC and Globecom Conferences. He is the author of ten books
and more than 800 publications. He is also the recipient of the 2017 IEEE
Communications Society Wireless Technical Committee Recognition Award,
the 2018 AdHoc Technical Committee Recognition Award, and the 2019 IEEE
Communications and Information Security Technical Recognition (CISTC)
Award. He served as the Editor-in-Chief of IEEE NETWORK and is currently
serving on the editorial boards of many IEEE transactions and magazines.
He was the Chair of the IEEE Communications Society Wireless Technical
Committee and the Chair of the TAOS Technical Committee. He served as
the IEEE Computer Society Distinguished Speaker and is currently the IEEE
ComSoc Distinguished Lecturer.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 23,2023 at 04:35:47 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


