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Abstract
With the development of 5G technologies and 

the wide application of artificial intelligence (AI), 
the mobile intelligent equipment and the providing 
services have both seen a significant rise in num-
bers and types. Some services, such as vehicular 
tasks, may go beyond the capability of the mobile 
equipment so that task offloading is required to 
help deliver such services. However, the graph 
structure of task offloading data, which can be a 
key to further improve algorithm’s performance, 
is seldomly considered in future 6G-AI combined 
communication systems. In this article, we pro-
pose an efficient end-edge-cloud orchestration 
system that combines storage-partition and com-
putation-shared in cloud cluster, cache mechanism, 
and cybertwin components. At the same time, we 
model this dynamic system as a graph structure 
composed of nodes and edges and propose a 
novel task offloading algorithm that incorporates a 
graph attention network (GAT) and action branch-
ing into deep deterministic policy gradient (DDPG) 
framework. Numerical results show that our off-
loading scheme achieves a good performance 
boost compared with other baseline schemes.

Introduction
Driven by the booming of the wireless com-
munication technology and the penetration of 
machine learning techniques into almost every 
industry, three numbers are rocketing: the quan-
tity of smart services, the amount of connections, 
and the volume of mobile data traffic. To support 
such dramatic increases, cloud computing and 
mobile edge computing (MEC) are two comple-
mentary and populous paradigms that have been 
investigated in the past decade. Since 6G aims 
at a capability increase by a factor of 10-100 [1], 
and has been envisaged as a “hyper-connected 
experience for all,” it is reasonable to expect the 
confluence of 6G and various artificial intelligence 
(AI)-enabled services to be an efficient orchestra-
tion among multiend, multiedge and multicloud.

There are three major application scenarios of 
5G: enhanced mobile broadband (eMBB), ultra-re-
liable and low latency communication (uRLLC), and 
massive machine type communication (mMTC). 
Based on these application scenarios, the MEC is 

expected to realize massive device connections, 
ultra-reliable, and low latency with the combination 
of AI technology, which is also applicable to future 
6G communication systems. The MEC sinks the 
cloud closer to the edge of Internet of Things (IoT) 
devices and shares the pressure of the central cloud. 
However, due to the heterogeneous deployment of 
edge servers and network dynamics, existing offload-
ing schemes are obsessed with task segmentation 
and ignore the overall system architecture, which 
makes it difficult to effectively support a large num-
ber of offloading tasks for IoT devices. Therefore, 
a deeper end-edge-cloud architecture and a more 
efficient offloading schemes are urgently needed.

Autonomous driving is a typical confluence of 
6G and AI-enabled services. If driving tasks including 
speed control, lane changing, and emergency brak-
ing should be conducted in good time, a colossal 
amount of data collected by radars, lidars, or other 
vehicular sensors need to be processed within mil-
liseconds. It is difficult for vehicles to process these 
tasks on their own. Additionally, as the whole world 
becomes more connected and more intelligent, 
demands of on-board entertainment or on-board 
working will be concerned. New and advanced vehi-
cles may not meet requirements of both storage and 
computation capabilities. Thus, task offloading should 
be adopted to allow edge servers or cloud servers to 
process tasks and deliver services with good quality of 
service (QoS). The core problems of task offloading 
can be explained from two levels: the level of system 
architecture and the level of optimization problem.

The Level of System Architecture
In the level of system architecture, the basic ques-
tions include whether the system is centralized or 
distributed and what collaboration is involved to 
facilitate task offloading. Generally, a centralized 
system seeks to optimize the system utility from 
the control center which is responsible for sched-
uling task offloading, while a distributed system 
relies on game theory to achieve Nash equilib-
rium. Since we mainly focus on the centralized 
system, more details of a distributed system will 
not be discussed in the article.

The task offloading systems proposed in recent 
years involve three collaborations: the end-end 
collaboration, the end-edge collaboration, and the 
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end-edge-cloud collaboration. For the end-end col-
laboration systems, vehicular fog computing (VFC) 
[2] is a typical end-end collaboration paradigm where 
vehicles are incentivized to share their surplus com-
puting resource. For example, Zhou et al. [3] pro-
posed to sign the vehicles with adequate resource 
up as fog servers and use fog servers’ resource to 
process tasks offloaded from request vehicles. For 
the end-edge collaboration systems, Ke et al. [4] pro-
posed an end-edge framework that supports partial 
offloading from the service equipment layer to the 
MEC service layer. Kiran et al. [5] designed a soft-
ware-defined edge cloudlet framework where mul-
tiple mobile users could offload their tasks to edge 
cloudlets, or to the remote cloud if edge cloudlets 
are overloaded. However, for the end-edge-cloud 
collaboration systems, there are relatively few. In 
addition, existing end-edge-cloud collaboration task 
offloading architectures are confined to the incum-
bent communication network. Yu et al.[6] raised that 
current networking paradigms should be upgraded 
to achieve key performance targets of 6G. There-
fore, it is worth exploring the task offloading scheme 
of the end-edge-cloud collaboration systems based 
on the future potential network architectures.

The Level of Optimization Problem
The level of an optimization problem is about for-
mulating and solving the task offloading problem. 
The objective function is maximized or minimized 
when a task offloading decision and a resource 
allocation are optimized. Convex optimizations, 
heuristic algorithms, and deep reinforcement 
learning (DRL) [7–10] are common methods used 
in the task offloading field. In [3], the authors 
proposed a task offloading mechanism based 
on matching learning and a vehicle computing 
resource management mechanism based on 
contract theory. Ji et al. [9] proposed a thresh-
old-based edge-assisted federated learning (EAFL) 
offloading strategy to reduce the computational 
burden. Yu et al. [10] developed an efficient algo-
rithm based on continuous convex approxima-
tion for joint optimization of task offloading and 
resource allocation problems.

DRL methods, which model the environment as 
a Markov decision process (MDP), are particularly 
handy. DRL methods do not assume knowledge 
of an exact mathematical model of the MDP. In 
addition, agents in these methods can learn a poli-
cy that maximizes the expected cumulative reward 
by continuously interacting with the environment 
in discrete time steps. Zhang et al. [7] proposed 
a deep-Q-learning-based scheme to maximize 
the system utility by choosing target servers and 
data transmission modes that include vehicle-to-BS 
mode and the joint mode of vehicle-to-vehicle and 
vehicle-to-RSU. Instead of optimizing an offloading 
decision, Ning et al. [8] formulated the problem 
of maximizing a profit function and utilized deep 
deterministic policy gradient (DDPG)[11] to jointly 
optimize the allocation of computing resources, 
caching storage and bandwidth. However, [7] and 
[8] only considered one aspect of task offloading, 
namely either offloading decisions or resource allo-
cations. Research attempts that optimized both 
aspects in a comprehensive way are relatively few. 
Besides, most of DRL-based task offloading meth-
ods are based on deep neural network (DNN) 
[4] or convolutional neural network (CNN) [8], 

without considering the graph structure of task off-
loading data. In some cases, using a graph neural 
network, such as a graph attention network (GAT)
[ 12], for feature extraction can play an important 
role in performance boost.

To tackle the above challenges, we propose 
an efficient DRL task offloading scheme for multi-
scale vehicular networks. The main contributions 
are as follows:
•	 We propose an end-edge-cloud orchestration 

system that combines storage-partition and com-
putation-shared in a cloud cluster, cache-consid-
ered mechanism and cybertwin components to 
facilitate vehicular tasks. It is an efficient system 
that schedules offloading in multiple cross-seg-
ments of different system scales.

•	 We model the dynamic system as a graph that 
consists of nodes and edges, where the fea-
tures of nodes and the relation/edge between 
two nodes vary across time. Based on this 
model, we formulate the task offloading optimi-
zation problem as maximizing the combination-
al utility boost brought by offloading.

•	 We propose a novel DDPG-based task off-
loading algorithm combining GAT and action 
branching, where the GAT confines offloading 
destinations to neighborhood and the action 
branching’s shared representation helps coor-
dinate different sub-action branches. Numerical 
results show that the proposed DDPG hybrid 
algorithm presents a good performance in 
small-scale, middle-scale or large-scale system.
The remainder of this article is organized as fol-

lows: The system model is introduced in the next 
section and the problem is formulated following 
that. Then, a novel task offloading algorithm is 
presented with details. Following that, numerical 
results are illustrated and discussed. Finally, a con-
clusion is given in the last section.

System Model
As aforementioned, we are motivated to design a 
task offloading scheme for future communication 
systems. Instead of designing a task offloading 
scheme from scratch, we build the system on top 
of a concept model with cybertwin components 
[13]. Moreover, our system is customized with fea-
tures required for solving the task offloading prob-
lem, including a scheduling center, the collaboration 
between cloud clusters and segment edges, the trait 
of storage-partition and computation-share in cloud 
clusters, and the cache-considered mechanism.

As shown in Fig. 1, the system can be depict-
ed as three layers: the cloud layer, the edge layer, 
and the service layer. The cloud layer contains a 
scheduling center and regional clouds. The sched-
uling center is responsible for receiving and inte-
grating request information from segment edges, 
and directing the task offloading process. A cloud 
cluster consists of several regional clouds that are 
maintained by different service providers. Each 
regional cloud keeps its own database to cache 
unique content, however a powerful server is 
shared to handle offloading tasks within the region. 
The advantage of the storage-partition and compu-
tation-share mechanism allows flexible and efficient 
infrastructure deployment. For example, a database 
can be placed according to the volume of the ser-
vice data, while a cloud server can be deployed 
based on the QoS requirement without consider-

The task offloading 
systems proposed in 
recent years involve 
three collaborations: the 
end-end collaboration, 
the end-edge collabora-
tion, and the end-edge-
cloud collaboration.
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ing storage capacity. Moreover, the cache-consid-
ered mechanism means that if the content required 
for a task is already cached in the database, the 
vehicle will be spared from uploading, thus saving 
time, energy and communication resources.

The main parts of the edge layer are multiple 
segment edges alongside the road, and these seg-
ment edges play a pivotal role in facilitating task 
offloading and service delivery. Firstly, each segment 
edge possesses communication resources to sup-
port wireless connections between vehicles and seg-
ment edges, and between segment edges and the 
scheduling center. So the cybertwins in each seg-
ment edge can connect with their original vehicles, 
forward the task requests to the scheduling center, 
and help deliver services to their origins. Secondly, 
in each region, a cloud cluster is wired-connected 
to all segment edges, so the segment edges are able 
to access contents cached in the cloud cluster or 
offload tasks further to the cloud cluster with a neg-
ligible delay. The segment edge situated in the over-
lapping areas of two regions is wire-connected to 
the two cloud clusters. Thirdly, light servers placed 
in segment edges can help process some offload-
ing tasks. Fourthly, neighboring segment edges are 
wired-connected to provide multiple segment edge 
server options for offloading.

Each vehicle has its own corresponding cyber-
twin at each segment edge which is responsible 
for security authentication, passing mission infor-
mation to the control center, forwarding mission 
data, delivering missions, etc. Segment edges are 
the hosts of cybertwins. As part of the edge layer, 
cybertwins are the facilitators and windows of a 
task offloading. The processing of task information 
and the final delivery of services must go through 
cybertwins. In addition, a connection between the 
vehicles and the cybertwins needs to go through 
a certification process that relies on identification 
devices deployed at the segment edges.

In the service layer, a bi-directional lane is divid-
ed into multiple overlapping segments, and each 
segment represents the coverage of one segment 
edge. So when a task is generated, the vehicle will 
send the request information through its cybertwin 
to the scheduling center and deal with the task 
according to the instruction from the scheduling 
center. In the overlapping area where multiple seg-
ment edges are available, each vehicle chooses a 
cybertwin according to its preference setting which 
is assumed the nearest distance in this article.

The whole task offloading process can be sum-
marized into four steps. First, vehicles connect 
with their cybertwins and send the task request 
information. Second, those cybertwins forward the 
task request information to the scheduling center. 
Third, the scheduling center integrates this infor-
mation and returns instructions about where and 
how to offload, and how to allocate computing 
and communication resources. Finally, according 
to the instructions, tasks are offloaded, a resource 
is allocated, and services are delivered.

Problem Formulation
In the system, there is a task set V = {1, 2, …, N} and 
a server set S = {1, 2, …, M}. Assume that the arrival 
rate of vehicular tasks in a time step follows a Pois-
son distribution with a parameter l. l is time-varying 
and is obtained by taking a bigger value between 0 
and z, where z follows a Gaussian distribution N(m, 

s). Since the traffic flow is often stable over a short 
period in real world, it is assumed that m remains the 
same over a certain number of time steps and updat-
ed periodically. Each task n  V is modeled by task 
size L(n), computing density D(n), the ratio of input 
to output Jn and the maximum tolerable delay Tmax. 
The workload of a task can be represented by the 
product of L(n) and D(n). The benefit of introducing 
D(n) and Jn is implicitly considering various task types. 
Moreover, the parameter Jn can model a situation 
where the delay of returning results is non-negligible, 
which is seldomly considered in existing research.

The task offloading proportion on is introduced 
to divide the task into a local computing part and 
an offloading part. Since the two parts are pro-
cessed in parallel, the total delay Tn is the bigger 
value between the local computing delay and the 
offloading delay (including the delay of uploading 
data, remote computing and returning results), and 
the total energy consumption En is summing the 
energy consumption of the local computing and 
the uplink transmission.

In the local computing part, the local workload 
divided by the local computing capability f (l)

n equals 
the local computing delay, and the local comput-
ing energy consumption is calculated as in [14] 
with a parameter k = 10–26 that depends on the 
chip architecture.

In the offloading part, we adopt the cache-con-
sidered mechanism with a binary number hn, where 
hn = 0 indicates that the content required for task 
n is already cached in cloud clusters and this vehi-
cle is free from uploading. If the content required 
is not cached, the offloading part would be com-
posed by uploading data, remote computing and 
returning results. Therefore, the offloading delay is 
summing the delay of the three aspects. The size 
of transmitting data divided by transmission rates 
equals to the transmission delay. Since we consid-
er an uplink-downlink decoupled communication 
system as [13], the achievable uplink rate r(u) 

n  and 
the achievable downlink rate r(d) 

n  depend on the 
product of the respective bandwidth W(u) 

n  , W(d) 
n  and 

spectral efficiency S(u) 
n  , S(d) 

n  . Meanwhile, we only 
consider the energy consumption of uploading 
which is associated with the uplink power P(u) 

n  .
In the task offloading problem, the delay and 

energy consumptions are the two main concerns, 
and the two aspects depend on the task model, 
the local computing model and the offloading 
model. It is assumed that a remote server resource 
is used at a financial cost F. To the build the con-
nection between the financial cost and the effi-
ciency boost, we introduce the delay efficiency T 
that represents how many giga CPU cycles of the 
task are processed in one unit time, and the ener-
gy efficiency E that indicates how many giga CPU 
cycles of the task are computed when consuming 
one unit energy. Further, the utility of a delay effi-
ciency Ut is defined as the average delay efficiency 
increase brought by one unit price compared with 
the all local computing. Likewise the utility of ener-
gy efficiency Ue is defined as the average energy 
efficiency improvement brought by one unit price 
compared with the all local computing. We intro-
duce a timeout flag rn and an excessive energy 
consumption flag xn, where rn = 0 indicates that 
the total delay Tn exceeds Tmax and xn = 0 indicates 
that the actual energy consumption En is bigger 
than the energy consumption of all local comput-

Each vehicle has its 
own corresponding 

cybertwin at each 
segment edge which is 
responsible for security 
authentication, passing 
mission information to 
the control center, for-
warding mission data, 

delivering missions, etc.
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ing EAL,n. It is to be noted that the time delay T or 
the energy consumption E divided by the prod-
uct of the task size L and the computing density 
D is the time efficiency T or energy efficiency E. 
Therefore, the overall utility U is given by a trade-off 
between Ut and Ue with a coefficient w  (0, 1):

𝒰𝒰 = 1
𝑁𝑁 ∑ 𝜔𝜔𝜌𝜌𝑛𝑛

𝑛𝑛∈𝑉𝑉
𝒰𝒰𝑡𝑡 + (1– 𝜔𝜔)𝜌𝜌𝑛𝑛𝜉𝜉𝑛𝑛𝒰𝒰𝑒𝑒

= 1
𝑁𝑁 ∑ 𝜔𝜔 𝜌𝜌𝑛𝑛(𝒯𝒯𝐴𝐴𝐴𝐴,𝑛𝑛– 𝒯𝒯𝑛𝑛)

𝒯𝒯𝐴𝐴𝐴𝐴,𝑛𝑛ℱ𝑛𝑛𝑛𝑛∈𝑉𝑉

 +(1– 𝜔𝜔) 𝜌𝜌𝑛𝑛𝜉𝜉𝑛𝑛(ℰ𝐴𝐴𝐴𝐴,𝑛𝑛– ℰ𝑛𝑛)
ℰ𝐴𝐴𝐴𝐴,𝑛𝑛ℱ𝑛𝑛

,

𝑠𝑠. 𝑡𝑡.    𝜌𝜌𝑛𝑛 = {0,     𝑖𝑖𝑖𝑖 𝑇𝑇𝑛𝑛 > 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚,
1,     𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,    

 𝜉𝜉𝑛𝑛 {0,     𝑖𝑖𝑖𝑖 𝐸𝐸𝑛𝑛 > 𝐸𝐸𝐴𝐴𝐴𝐴,𝑛𝑛,
1,     𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. 

		  (1)
The problem becomes: how to maximize the 

overall utility by optimizing an offloading decision of 
all tasks and resource allocation of segment edges 
and cloud clusters. It is to be noted that each seg-
ment edge or cloud cluster only facilitates tasks with-
in the coverage and the total allocating resource of 
each segment edge or cloud cluster must not exceed 
the total resources owned by the cloud cluster itself.

The Hybrid of GAT and  
Action Branching under DDPG Framework

The DDPG-based Framework
Although DDPG has seen many successful imple-
mentations in a continuous control area, challeng-
es such as the scale of the system, the availability 
of remote resources to each vehicle, and the con-
straints of resources allocation need to be further 
tackled. To cope with these challenges, we com-
bine DDPG, multi-agent reinforcement learning and 
action branching [15] to form the DDPG hybrid.

Like other DRL methods, the proposed DDPG 
hybrid also contains three basic components: state, 
action and reward, which are described as follows
•	 State: At time step t, the state of the environ-

ment, denoted as st, includes L(n), D(n), Un, Tmax, 
hn, fn(l), Pn(u), Wn(u), Wn(d), Sn(u), Sn(d), fm(r), Cm(r) and 

A, where fm(r) stands for the computing resource 
of server m, Cm(r) denotes the unit price of rent-
ing server m and A represents the availability of 
each server to each vehicle.

•	 Action: The action at involves five sub-actions: 
which server to offload, how much to offload, 
and how to allocate the uplink resource, how 
to allocate the remote computing resource, 
and how to allocate the downlink resource.

•	 Reward: Affected by at, the environment trans-
fers to the next state st+1 and returns an imme-
diate reward rt, where rt is defined as U.
Like the original DDPG, this approach also 

adopts an actor-critic framework, a replay buffer that 
offers training samples and soft updates on target 
networks. We add a Gaussian noise N(0, 0.01) to 
each sub-action for exploration. Moreover, instead 
of using one agent with five branches, which pres-
ents poor performance, we arrange two agents with 
different branches to learn the offloading policy and 
the resource allocation policy, respectively. In each 
action-branching actor, there are two layers: the first 
layer that includes one GAT layer is a shared repre-
sentation module and the second layer consists of 
two/three GAT layers, as shown in Fig. 2.

The Hybrid of GAT and Action Branching
Although we have analyzed the state, action and 
reward function, there are still many difficulties:
•	 The state data is complex.
•	 The action has multiple dimensions.
•	 The dynamic change of the dimension.
•	 The lightness of the algorithm and the training effect. 

For example, among the features listed previ-
ously, A is especially important because it directly 
affects which server a vehicle can offload to and 
which vehicle a cloud cluster or a segment edge 
should assign its resources to. However, such rela-
tion feature presents a great challenge to DNN or 
CNN in feature extraction because the data of DNN 
is sequence in nature and that of CNN is grid-like 
structure, while the data in this problem can not be 
simply represented by these two types. Thus, we 
model the task offloading data as a graph and reor-
ganize the aforesaid features into three categories:
•	 The features of vehicles: L(n), D(n), Un, Tmax, hn, 

fn(l), and Pn(u).
•	 The features of cloud clusters or segment 

edges: Wn(u), Wn(d), Sn(u), Sn(d), fm(r), and Cm(r).

FIGURE 1. End-edge-cloud orchestrated system with cybertwins.
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•	 The availability matrix of cloud clusters or seg-
ment edges to vehicles: A.
Then, GAT with multi-head attention is used as 

the basic structure of actor networks, as shown in 
Fig. 2. The shared representation module is a stan-
dard GAT layer and the branches are the modified 
GAT layers. The critic networks and target critic 
networks are similar to the actor networks, howev-
er the third layer, namely a fully-connected layer, 
is concatenated in the critic networks and target 
critic networks.

One sub-action of the actor network 1, namely 
the decision about where to offload, is input as an 
adjacency matrix into the actor network 2. This 
is to confine a server’s resource allocation to the 
vehicles that have chosen the server as the offload-
ing destination.

Simulation Results

Parameter Settings
In the experiment, we consider two cloud clus-
ters and seven segment edges. The computing 
resource of each segment edge is randomly dis-
tributed from 150 to 200 GHz. Wn(u) is randomly 
distributed from 50 to 200 MHz, and W(d)n from 
50 to 100 MHz. Both Sn(u) and Sn(d) are randomly 
distributed from 50 to 100 bit/s/Hz. In addition, 
one cloud cluster connects with the first four seg-
ment edges and the other cloud cluster connects 
with the last four. The computing resource of the 
two cloud clusters are set as 300 and 400 GHz, 
respectively. Besides, it takes 0.5 unit price when 
consuming one GHz of an segment edge and 1 
unit price when using one GHz of a cloud cluster.

We select two groups of tasks: group A con-
sumes more computing resources and group B 
uses more communication resources. Specifically, 
the task size of group A follows a uniform distri-
bution between 8 to 10 kb, the corresponding 
computing density follows a uniform distribution 
between 10 to 12 kcycle/bit, and the arrival rate 
of these tasks is assumed to have a Poisson distri-
bution with parameter l1. The task size of group 
B follows a uniform distribution between 10 to 12 
kb, the corresponding computing density follows 
a uniform distribution between 8 to 10 kcycle/bit, 
and the arrival rate is assumed to have a Poisson 
distribution with parameter l2. Specifically, l1 = 

max(0, z1) and l2 = max(0, z2), where z1 ∼ N(m1, 
1) and z2 ∼ N(m2, 1). Both m1 and m2 range from 
5 to 20. The two parameters remain the same in 
one episode and get updated when a new epi-
sode begins. The computing capability of vehicles 
is randomly distributed from 0 to 1 GHz and Un is 
from 0 to 0.5. Pn(u) is fixed as 0.5 W and w is set as 
0.5. Tmax is set as 10 ms.

The first layer in actor 1, actor 2, target actor 
1, and target actor 2 is standard GAT layer based 
on four attention heads and the corresponding 
hidden feature’s size is 16. The second layer in 
these actors is a modified GAT layer with one 
attention head, where the hidden feature’s size 
depends on the quantity of segment edges and 
cloud clusters. We use Adam optimizer with the 
same learning rate of 0.0005 for the actor and the 
critic and train with a minibatch size of 128. The 
target networks are updated with t = 0.005. We 
employ a replay buffer of size 50000 and adopt 
a reward discount factor of 0.99. The average U 
is considered as a key performance index and 
obtained by averaging over 1000 episodes.

Results and Discussions
As shown in Fig. 3, the DDPG hybrid presents 
a good convergence, and its average U varies 
between 17.5 and 19.3 after sufficient training 
episodes. As discussed previously, U stands for 
the combined efficiency improvement of the 
delay and energy consumption brought by one 
unit price compared with the complete local com-
puting. More intuitively, take 19 for example, it 
means that by spending every one unit price for 
offloading, the average utility of the policy gener-
ated by the DDPG hybrid is 19 times better than 
the average utility when tasks are all processed 
by the vehicles themselves. At the same time, we 
can see that the task offloading and resource allo-
cation-deep deterministic policy gradient-action 
branching (TORA-DDPG-AB) algorithm based on 
CNN and DNN performs poorly. The reason is 
that the CNN and DNN cannot effectively extract 
relational features and fail to limit the object of 
resource allocation to the corresponding neigh-
borhood, resulting in some idle resources, while 
the effective task exceeds the delay or energy 
consumption limit by not being allocated suffi-
cient resources.

FIGURE 2. Dual-Agent DRL Framework.
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Since common DNNs and CNNs cannot natu-
rally confine the resource allocation within a cer-
tain neighborhood, the DNN- or CNN-based DRL 
frameworks have difficulty in satisfying allocation 
constraints meanwhile guaranteeing performance. 
Thus, the proposed DDPG hybrid is compared 
with the following schemes:
• RAO + Avg: random all off loading plus average 

resource allocation.
• RAO + Ran: random all off loading plus random 

resource allocation.
• RO + Avg: random offloading at random pro-

portion plus average resource allocation.
• RO + Ran: random offloading at random pro-

portion plus random resource allocation.
Figures 4a and b demonstrate how the arrival 

rate affects the system utility. Though the aver-

age U of the DDPG hybrid slides slightly when 
the task number increases, the DDPG hybrid 
outperforms the other four schemes. Figures 4c 
and d show how the utility of different schemes 
changes along with a growing workload. The utili-
ty of all fi ve schemes falls as the workload of each 
task rises, meanwhile the DDPG hybrid presents 
a better performance compared to others. It is 
to be noted that Figs. 4a and c show how diff er-
ent schemes perform as parameters of group A 
change, and Figs. 4b and d correspond to tasks 
of group B. Similar utility performance and trend 
indicate that the system can balance the two 
groups of tasks.

We then extend the experiment to systems of 
a larger scale. Some parameters are specifi ed in 
Table 1, where SE is the abbreviation of a seg-
ment edge and CC is the abbreviation of a cloud 
cluster. Other parameters that are not specified 
remain the same as specified in the last subsec-
tion. As shown  in Fig. 5, the proposed method 
performs well even when the number of vehicles 
becomes more than two hundred.

chALLenGes And future dIrectIons
This article provides a new solution for the end-
edge-cloud collaboration system with dynamic multi-
to-multi relationship, but the proposed solution still 
has room for improvement and optimization.

noveL GrAph neurAL networks
The DRL algorithm proposed in this article is 
based on improving the GAT network, but the 
GAT network is the most basic of many graph neu-
ral networks. A graph neural network is a research 
hotspot in recent years. Many researchers have 
proposed new graph neural networks suitable for 
different needs, such as Heterogeneous Graph 
Attention Network (HAN), Heterogeneous Graph 
Structural Attention Neural Network (HetSANN), 
Knowledge Graph Attention Network (KGAT), 
etc. Whether these new graph neural networks 
can be used to further improve performance or 
solve problems beyond the scope of the system 
model proposed in this article is worthy of further 
exploration and research.

uLtrA-dense muLtI-to-muLtI reLAtIonAL systems
This article conducts simulation experiments on 
small-scale and extended systems and achieves 
good performance, but for systems with ultra-
dense multi-to-multi relationships, the perfor-
mance of the algorithm is not ideal. How to 
design the task off loading and resource allocation 
optimization algorithm suitable for ultra-dense sys-
tems is also the focus of the next work.

dependencIes between tAsks
This article only considers some off loading tasks, 
but does not consider the graph task off loading 
class that has interdependence between subtasks 
and task segmentation constraints. Since this arti-
cle has modeled the system as a graph, if we 
want to consider the graph task on the basis of 
this system graph, it is equivalent to further mod-
eling each node of the system graph as a graph. 
How to deal with the relationship of nested 
graphs and achieve effi  cient feature extraction is 
a complex task, which will be further studied in 
the follow-up work.

FIGURE 3. Training curves of the DDPG hybrid.

FIGURE 4. Average U over diff erent arrival rates and workloads.

TABLE 1. Parameters of diff erent systems.

Small-scale Middle-scale Large-scale

SE Qty. 7 13 25

f (r)SE (GHz) [150, 200] [450, 500] [750, 800]

f (r)CC (GHz) 300, 400 900, 1000 1500, 1600

m1 [5, 20] [50, 70] [100, 120]

m2 [5, 20] [50, 70] [100, 120]
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concLusIon
In this article, we investigated the main factors lim-
iting a task offloading performance and proposed 
an end-edge-cloud orchestration scheme for vehic-
ular task offloading. To cope with dynamics and 
delay-sensitiveness of the system, to capture the 
availability features between vehicles and segment 
edges or cloud clusters, and to confi ne the resource 
allocation of segment edges or cloud clusters with-
in their respective neighborhoods, we proposed a 
novel DDPG hybrid with GAT and action branching. 
Numerical results demonstrated that the proposed 
scheme achieves a good performance and can be 
applied to a diff erent-scale system.
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FIGURE 5. Average U over various-scale systems.
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