
IEEE Wireless Communications • August 2023 1471536-1284/23/$25.00 © 2023 IEEE

Abstract
With the development of 5G technologies and

the wide application of artificial intelligence (AI),
the mobile intelligent equipment and the providing
services have both seen a significant rise in num-
bers and types. Some services, such as vehicular
tasks, may go beyond the capability of the mobile
equipment so that task offloading is required to
help deliver such services. However, the graph
structure of task offloading data, which can be a
key to further improve algorithm’s performance,
is seldomly considered in future 6G-AI combined
communication systems. In this article, we pro-
pose an efficient end-edge-cloud orchestration
system that combines storage-partition and com-
putation-shared in cloud cluster, cache mechanism,
and cybertwin components. At the same time, we
model this dynamic system as a graph structure
composed of nodes and edges and propose a
novel task offloading algorithm that incorporates a
graph attention network (GAT) and action branch-
ing into deep deterministic policy gradient (DDPG)
framework. Numerical results show that our off-
loading scheme achieves a good performance
boost compared with other baseline schemes.

Introduction
Driven by the booming of the wireless com-
munication technology and the penetration of
machine learning techniques into almost every
industry, three numbers are rocketing: the quan-
tity of smart services, the amount of connections,
and the volume of mobile data traffic. To support
such dramatic increases, cloud computing and
mobile edge computing (MEC) are two comple-
mentary and populous paradigms that have been
investigated in the past decade. Since 6G aims
at a capability increase by a factor of 10-100 [1],
and has been envisaged as a “hyper-connected
experience for all,” it is reasonable to expect the
confluence of 6G and various artificial intelligence
(AI)-enabled services to be an efficient orchestra-
tion among multiend, multiedge and multicloud.

There are three major application scenarios of
5G: enhanced mobile broadband (eMBB), ultra-re-
liable and low latency communication (uRLLC), and
massive machine type communication (mMTC).
Based on these application scenarios, the MEC is

expected to realize massive device connections,
ultra-reliable, and low latency with the combination
of AI technology, which is also applicable to future
6G communication systems. The MEC sinks the
cloud closer to the edge of Internet of Things (IoT)
devices and shares the pressure of the central cloud.
However, due to the heterogeneous deployment of
edge servers and network dynamics, existing offload-
ing schemes are obsessed with task segmentation
and ignore the overall system architecture, which
makes it difficult to effectively support a large num-
ber of offloading tasks for IoT devices. Therefore,
a deeper end-edge-cloud architecture and a more
efficient offloading schemes are urgently needed.

Autonomous driving is a typical confluence of
6G and AI-enabled services. If driving tasks including
speed control, lane changing, and emergency brak-
ing should be conducted in good time, a colossal
amount of data collected by radars, lidars, or other
vehicular sensors need to be processed within mil-
liseconds. It is difficult for vehicles to process these
tasks on their own. Additionally, as the whole world
becomes more connected and more intelligent,
demands of on-board entertainment or on-board
working will be concerned. New and advanced vehi-
cles may not meet requirements of both storage and
computation capabilities. Thus, task offloading should
be adopted to allow edge servers or cloud servers to
process tasks and deliver services with good quality of
service (QoS). The core problems of task offloading
can be explained from two levels: the level of system
architecture and the level of optimization problem.

The Level of System Architecture
In the level of system architecture, the basic ques-
tions include whether the system is centralized or
distributed and what collaboration is involved to
facilitate task offloading. Generally, a centralized
system seeks to optimize the system utility from
the control center which is responsible for sched-
uling task offloading, while a distributed system
relies on game theory to achieve Nash equilib-
rium. Since we mainly focus on the centralized
system, more details of a distributed system will
not be discussed in the article.

The task offloading systems proposed in recent
years involve three collaborations: the end-end
collaboration, the end-edge collaboration, and the

Yejun He, Xiaoxu Zhong, Youhui Gan, Haixia Cui, and Mohsen Guizani

A DDPG Hybrid of Graph Attention Network and
Action Branching for Multi-Scale End-Edge-

Cloud Vehicular Orchestrated Task Offloading

ACCEPTED FROM OPEN CALL

Yejun He, Xiaoxu Zhong, and Youhui Gan are with Shenzhen University, China; Haixia Cui is with South China Normal University, China;
Mohsen Guizani is with Mohamed Bin Zayed University of Artificial Intelligence, UAE.

Digital Object Identifier:
10.1109/MWC.019.2100718

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on September 23,2023 at 16:17:46 UTC from IEEE Xplore. Restrictions apply.

IEEE Wireless Communications • August 2023148

end-edge-cloud collaboration. For the end-end col-
laboration systems, vehicular fog computing (VFC)
[2] is a typical end-end collaboration paradigm where
vehicles are incentivized to share their surplus com-
puting resource. For example, Zhou et al. [3] pro-
posed to sign the vehicles with adequate resource
up as fog servers and use fog servers’ resource to
process tasks offloaded from request vehicles. For
the end-edge collaboration systems, Ke et al. [4] pro-
posed an end-edge framework that supports partial
offloading from the service equipment layer to the
MEC service layer. Kiran et al. [5] designed a soft-
ware-defined edge cloudlet framework where mul-
tiple mobile users could offload their tasks to edge
cloudlets, or to the remote cloud if edge cloudlets
are overloaded. However, for the end-edge-cloud
collaboration systems, there are relatively few. In
addition, existing end-edge-cloud collaboration task
offloading architectures are confined to the incum-
bent communication network. Yu et al.[6] raised that
current networking paradigms should be upgraded
to achieve key performance targets of 6G. There-
fore, it is worth exploring the task offloading scheme
of the end-edge-cloud collaboration systems based
on the future potential network architectures.

The Level of Optimization Problem
The level of an optimization problem is about for-
mulating and solving the task offloading problem.
The objective function is maximized or minimized
when a task offloading decision and a resource
allocation are optimized. Convex optimizations,
heuristic algorithms, and deep reinforcement
learning (DRL) [7–10] are common methods used
in the task offloading field. In [3], the authors
proposed a task offloading mechanism based
on matching learning and a vehicle computing
resource management mechanism based on
contract theory. Ji et al. [9] proposed a thresh-
old-based edge-assisted federated learning (EAFL)
offloading strategy to reduce the computational
burden. Yu et al. [10] developed an efficient algo-
rithm based on continuous convex approxima-
tion for joint optimization of task offloading and
resource allocation problems.

DRL methods, which model the environment as
a Markov decision process (MDP), are particularly
handy. DRL methods do not assume knowledge
of an exact mathematical model of the MDP. In
addition, agents in these methods can learn a poli-
cy that maximizes the expected cumulative reward
by continuously interacting with the environment
in discrete time steps. Zhang et al. [7] proposed
a deep-Q-learning-based scheme to maximize
the system utility by choosing target servers and
data transmission modes that include vehicle-to-BS
mode and the joint mode of vehicle-to-vehicle and
vehicle-to-RSU. Instead of optimizing an offloading
decision, Ning et al. [8] formulated the problem
of maximizing a profit function and utilized deep
deterministic policy gradient (DDPG)[11] to jointly
optimize the allocation of computing resources,
caching storage and bandwidth. However, [7] and
[8] only considered one aspect of task offloading,
namely either offloading decisions or resource allo-
cations. Research attempts that optimized both
aspects in a comprehensive way are relatively few.
Besides, most of DRL-based task offloading meth-
ods are based on deep neural network (DNN)
[4] or convolutional neural network (CNN) [8],

without considering the graph structure of task off-
loading data. In some cases, using a graph neural
network, such as a graph attention network (GAT)
[12], for feature extraction can play an important
role in performance boost.

To tackle the above challenges, we propose
an efficient DRL task offloading scheme for multi-
scale vehicular networks. The main contributions
are as follows:
•	 We propose an end-edge-cloud orchestration

system that combines storage-partition and com-
putation-shared in a cloud cluster, cache-consid-
ered mechanism and cybertwin components to
facilitate vehicular tasks. It is an efficient system
that schedules offloading in multiple cross-seg-
ments of different system scales.

•	 We model the dynamic system as a graph that
consists of nodes and edges, where the fea-
tures of nodes and the relation/edge between
two nodes vary across time. Based on this
model, we formulate the task offloading optimi-
zation problem as maximizing the combination-
al utility boost brought by offloading.

•	 We propose a novel DDPG-based task off-
loading algorithm combining GAT and action
branching, where the GAT confines offloading
destinations to neighborhood and the action
branching’s shared representation helps coor-
dinate different sub-action branches. Numerical
results show that the proposed DDPG hybrid
algorithm presents a good performance in
small-scale, middle-scale or large-scale system.
The remainder of this article is organized as fol-

lows: The system model is introduced in the next
section and the problem is formulated following
that. Then, a novel task offloading algorithm is
presented with details. Following that, numerical
results are illustrated and discussed. Finally, a con-
clusion is given in the last section.

System Model
As aforementioned, we are motivated to design a
task offloading scheme for future communication
systems. Instead of designing a task offloading
scheme from scratch, we build the system on top
of a concept model with cybertwin components
[13]. Moreover, our system is customized with fea-
tures required for solving the task offloading prob-
lem, including a scheduling center, the collaboration
between cloud clusters and segment edges, the trait
of storage-partition and computation-share in cloud
clusters, and the cache-considered mechanism.

As shown in Fig. 1, the system can be depict-
ed as three layers: the cloud layer, the edge layer,
and the service layer. The cloud layer contains a
scheduling center and regional clouds. The sched-
uling center is responsible for receiving and inte-
grating request information from segment edges,
and directing the task offloading process. A cloud
cluster consists of several regional clouds that are
maintained by different service providers. Each
regional cloud keeps its own database to cache
unique content, however a powerful server is
shared to handle offloading tasks within the region.
The advantage of the storage-partition and compu-
tation-share mechanism allows flexible and efficient
infrastructure deployment. For example, a database
can be placed according to the volume of the ser-
vice data, while a cloud server can be deployed
based on the QoS requirement without consider-

The task offloading
systems proposed in
recent years involve
three collaborations: the
end-end collaboration,
the end-edge collabora-
tion, and the end-edge-
cloud collaboration.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on September 23,2023 at 16:17:46 UTC from IEEE Xplore. Restrictions apply.

IEEE Wireless Communications • August 2023 149

ing storage capacity. Moreover, the cache-consid-
ered mechanism means that if the content required
for a task is already cached in the database, the
vehicle will be spared from uploading, thus saving
time, energy and communication resources.

The main parts of the edge layer are multiple
segment edges alongside the road, and these seg-
ment edges play a pivotal role in facilitating task
offloading and service delivery. Firstly, each segment
edge possesses communication resources to sup-
port wireless connections between vehicles and seg-
ment edges, and between segment edges and the
scheduling center. So the cybertwins in each seg-
ment edge can connect with their original vehicles,
forward the task requests to the scheduling center,
and help deliver services to their origins. Secondly,
in each region, a cloud cluster is wired-connected
to all segment edges, so the segment edges are able
to access contents cached in the cloud cluster or
offload tasks further to the cloud cluster with a neg-
ligible delay. The segment edge situated in the over-
lapping areas of two regions is wire-connected to
the two cloud clusters. Thirdly, light servers placed
in segment edges can help process some offload-
ing tasks. Fourthly, neighboring segment edges are
wired-connected to provide multiple segment edge
server options for offloading.

Each vehicle has its own corresponding cyber-
twin at each segment edge which is responsible
for security authentication, passing mission infor-
mation to the control center, forwarding mission
data, delivering missions, etc. Segment edges are
the hosts of cybertwins. As part of the edge layer,
cybertwins are the facilitators and windows of a
task offloading. The processing of task information
and the final delivery of services must go through
cybertwins. In addition, a connection between the
vehicles and the cybertwins needs to go through
a certification process that relies on identification
devices deployed at the segment edges.

In the service layer, a bi-directional lane is divid-
ed into multiple overlapping segments, and each
segment represents the coverage of one segment
edge. So when a task is generated, the vehicle will
send the request information through its cybertwin
to the scheduling center and deal with the task
according to the instruction from the scheduling
center. In the overlapping area where multiple seg-
ment edges are available, each vehicle chooses a
cybertwin according to its preference setting which
is assumed the nearest distance in this article.

The whole task offloading process can be sum-
marized into four steps. First, vehicles connect
with their cybertwins and send the task request
information. Second, those cybertwins forward the
task request information to the scheduling center.
Third, the scheduling center integrates this infor-
mation and returns instructions about where and
how to offload, and how to allocate computing
and communication resources. Finally, according
to the instructions, tasks are offloaded, a resource
is allocated, and services are delivered.

Problem Formulation
In the system, there is a task set V = {1, 2, …, N} and
a server set S = {1, 2, …, M}. Assume that the arrival
rate of vehicular tasks in a time step follows a Pois-
son distribution with a parameter l. l is time-varying
and is obtained by taking a bigger value between 0
and z, where z follows a Gaussian distribution N(m,

s). Since the traffic flow is often stable over a short
period in real world, it is assumed that m remains the
same over a certain number of time steps and updat-
ed periodically. Each task n  V is modeled by task
size L(n), computing density D(n), the ratio of input
to output Jn and the maximum tolerable delay Tmax.
The workload of a task can be represented by the
product of L(n) and D(n). The benefit of introducing
D(n) and Jn is implicitly considering various task types.
Moreover, the parameter Jn can model a situation
where the delay of returning results is non-negligible,
which is seldomly considered in existing research.

The task offloading proportion on is introduced
to divide the task into a local computing part and
an offloading part. Since the two parts are pro-
cessed in parallel, the total delay Tn is the bigger
value between the local computing delay and the
offloading delay (including the delay of uploading
data, remote computing and returning results), and
the total energy consumption En is summing the
energy consumption of the local computing and
the uplink transmission.

In the local computing part, the local workload
divided by the local computing capability f (l)

n equals
the local computing delay, and the local comput-
ing energy consumption is calculated as in [14]
with a parameter k = 10–26 that depends on the
chip architecture.

In the offloading part, we adopt the cache-con-
sidered mechanism with a binary number hn, where
hn = 0 indicates that the content required for task
n is already cached in cloud clusters and this vehi-
cle is free from uploading. If the content required
is not cached, the offloading part would be com-
posed by uploading data, remote computing and
returning results. Therefore, the offloading delay is
summing the delay of the three aspects. The size
of transmitting data divided by transmission rates
equals to the transmission delay. Since we consid-
er an uplink-downlink decoupled communication
system as [13], the achievable uplink rate r(u)

n and
the achievable downlink rate r(d)

n depend on the
product of the respective bandwidth W(u)

n , W(d)
n and

spectral efficiency S(u)
n , S(d)

n . Meanwhile, we only
consider the energy consumption of uploading
which is associated with the uplink power P(u)

n .
In the task offloading problem, the delay and

energy consumptions are the two main concerns,
and the two aspects depend on the task model,
the local computing model and the offloading
model. It is assumed that a remote server resource
is used at a financial cost F. To the build the con-
nection between the financial cost and the effi-
ciency boost, we introduce the delay efficiency T
that represents how many giga CPU cycles of the
task are processed in one unit time, and the ener-
gy efficiency E that indicates how many giga CPU
cycles of the task are computed when consuming
one unit energy. Further, the utility of a delay effi-
ciency Ut is defined as the average delay efficiency
increase brought by one unit price compared with
the all local computing. Likewise the utility of ener-
gy efficiency Ue is defined as the average energy
efficiency improvement brought by one unit price
compared with the all local computing. We intro-
duce a timeout flag rn and an excessive energy
consumption flag xn, where rn = 0 indicates that
the total delay Tn exceeds Tmax and xn = 0 indicates
that the actual energy consumption En is bigger
than the energy consumption of all local comput-

Each vehicle has its
own corresponding

cybertwin at each
segment edge which is
responsible for security
authentication, passing
mission information to
the control center, for-
warding mission data,

delivering missions, etc.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on September 23,2023 at 16:17:46 UTC from IEEE Xplore. Restrictions apply.

IEEE Wireless Communications • August 2023150

ing EAL,n. It is to be noted that the time delay T or
the energy consumption E divided by the prod-
uct of the task size L and the computing density
D is the time efficiency T or energy efficiency E.
Therefore, the overall utility U is given by a trade-off
between Ut and Ue with a coefficient w  (0, 1):

𝒰𝒰 = 1
𝑁𝑁 ∑ 𝜔𝜔𝜌𝜌𝑛𝑛

𝑛𝑛∈𝑉𝑉
𝒰𝒰𝑡𝑡 + (1– 𝜔𝜔)𝜌𝜌𝑛𝑛𝜉𝜉𝑛𝑛𝒰𝒰𝑒𝑒

= 1
𝑁𝑁 ∑ 𝜔𝜔 𝜌𝜌𝑛𝑛(𝒯𝒯𝐴𝐴𝐴𝐴,𝑛𝑛– 𝒯𝒯𝑛𝑛)

𝒯𝒯𝐴𝐴𝐴𝐴,𝑛𝑛ℱ𝑛𝑛𝑛𝑛∈𝑉𝑉

 +(1– 𝜔𝜔) 𝜌𝜌𝑛𝑛𝜉𝜉𝑛𝑛(ℰ𝐴𝐴𝐴𝐴,𝑛𝑛– ℰ𝑛𝑛)
ℰ𝐴𝐴𝐴𝐴,𝑛𝑛ℱ𝑛𝑛

,

𝑠𝑠. 𝑡𝑡. 𝜌𝜌𝑛𝑛 = {0, 𝑖𝑖𝑖𝑖 𝑇𝑇𝑛𝑛 > 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚,
1, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,

 𝜉𝜉𝑛𝑛 {0, 𝑖𝑖𝑖𝑖 𝐸𝐸𝑛𝑛 > 𝐸𝐸𝐴𝐴𝐴𝐴,𝑛𝑛,
1, 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.

		 (1)
The problem becomes: how to maximize the

overall utility by optimizing an offloading decision of
all tasks and resource allocation of segment edges
and cloud clusters. It is to be noted that each seg-
ment edge or cloud cluster only facilitates tasks with-
in the coverage and the total allocating resource of
each segment edge or cloud cluster must not exceed
the total resources owned by the cloud cluster itself.

The Hybrid of GAT and
Action Branching under DDPG Framework

The DDPG-based Framework
Although DDPG has seen many successful imple-
mentations in a continuous control area, challeng-
es such as the scale of the system, the availability
of remote resources to each vehicle, and the con-
straints of resources allocation need to be further
tackled. To cope with these challenges, we com-
bine DDPG, multi-agent reinforcement learning and
action branching [15] to form the DDPG hybrid.

Like other DRL methods, the proposed DDPG
hybrid also contains three basic components: state,
action and reward, which are described as follows
•	 State: At time step t, the state of the environ-

ment, denoted as st, includes L(n), D(n), Un, Tmax,
hn, fn(l), Pn(u), Wn(u), Wn(d), Sn(u), Sn(d), fm(r), Cm(r) and

A, where fm(r) stands for the computing resource
of server m, Cm(r) denotes the unit price of rent-
ing server m and A represents the availability of
each server to each vehicle.

•	 Action: The action at involves five sub-actions:
which server to offload, how much to offload,
and how to allocate the uplink resource, how
to allocate the remote computing resource,
and how to allocate the downlink resource.

•	 Reward: Affected by at, the environment trans-
fers to the next state st+1 and returns an imme-
diate reward rt, where rt is defined as U.
Like the original DDPG, this approach also

adopts an actor-critic framework, a replay buffer that
offers training samples and soft updates on target
networks. We add a Gaussian noise N(0, 0.01) to
each sub-action for exploration. Moreover, instead
of using one agent with five branches, which pres-
ents poor performance, we arrange two agents with
different branches to learn the offloading policy and
the resource allocation policy, respectively. In each
action-branching actor, there are two layers: the first
layer that includes one GAT layer is a shared repre-
sentation module and the second layer consists of
two/three GAT layers, as shown in Fig. 2.

The Hybrid of GAT and Action Branching
Although we have analyzed the state, action and
reward function, there are still many difficulties:
•	 The state data is complex.
•	 The action has multiple dimensions.
•	 The dynamic change of the dimension.
•	 The lightness of the algorithm and the training effect.

For example, among the features listed previ-
ously, A is especially important because it directly
affects which server a vehicle can offload to and
which vehicle a cloud cluster or a segment edge
should assign its resources to. However, such rela-
tion feature presents a great challenge to DNN or
CNN in feature extraction because the data of DNN
is sequence in nature and that of CNN is grid-like
structure, while the data in this problem can not be
simply represented by these two types. Thus, we
model the task offloading data as a graph and reor-
ganize the aforesaid features into three categories:
•	 The features of vehicles: L(n), D(n), Un, Tmax, hn,

fn(l), and Pn(u).
•	 The features of cloud clusters or segment

edges: Wn(u), Wn(d), Sn(u), Sn(d), fm(r), and Cm(r).

FIGURE 1. End-edge-cloud orchestrated system with cybertwins.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on September 23,2023 at 16:17:46 UTC from IEEE Xplore. Restrictions apply.

IEEE Wireless Communications • August 2023 151

•	 The availability matrix of cloud clusters or seg-
ment edges to vehicles: A.
Then, GAT with multi-head attention is used as

the basic structure of actor networks, as shown in
Fig. 2. The shared representation module is a stan-
dard GAT layer and the branches are the modified
GAT layers. The critic networks and target critic
networks are similar to the actor networks, howev-
er the third layer, namely a fully-connected layer,
is concatenated in the critic networks and target
critic networks.

One sub-action of the actor network 1, namely
the decision about where to offload, is input as an
adjacency matrix into the actor network 2. This
is to confine a server’s resource allocation to the
vehicles that have chosen the server as the offload-
ing destination.

Simulation Results

Parameter Settings
In the experiment, we consider two cloud clus-
ters and seven segment edges. The computing
resource of each segment edge is randomly dis-
tributed from 150 to 200 GHz. Wn(u) is randomly
distributed from 50 to 200 MHz, and W(d)n from
50 to 100 MHz. Both Sn(u) and Sn(d) are randomly
distributed from 50 to 100 bit/s/Hz. In addition,
one cloud cluster connects with the first four seg-
ment edges and the other cloud cluster connects
with the last four. The computing resource of the
two cloud clusters are set as 300 and 400 GHz,
respectively. Besides, it takes 0.5 unit price when
consuming one GHz of an segment edge and 1
unit price when using one GHz of a cloud cluster.

We select two groups of tasks: group A con-
sumes more computing resources and group B
uses more communication resources. Specifically,
the task size of group A follows a uniform distri-
bution between 8 to 10 kb, the corresponding
computing density follows a uniform distribution
between 10 to 12 kcycle/bit, and the arrival rate
of these tasks is assumed to have a Poisson distri-
bution with parameter l1. The task size of group
B follows a uniform distribution between 10 to 12
kb, the corresponding computing density follows
a uniform distribution between 8 to 10 kcycle/bit,
and the arrival rate is assumed to have a Poisson
distribution with parameter l2. Specifically, l1 =

max(0, z1) and l2 = max(0, z2), where z1 ∼ N(m1,
1) and z2 ∼ N(m2, 1). Both m1 and m2 range from
5 to 20. The two parameters remain the same in
one episode and get updated when a new epi-
sode begins. The computing capability of vehicles
is randomly distributed from 0 to 1 GHz and Un is
from 0 to 0.5. Pn(u) is fixed as 0.5 W and w is set as
0.5. Tmax is set as 10 ms.

The first layer in actor 1, actor 2, target actor
1, and target actor 2 is standard GAT layer based
on four attention heads and the corresponding
hidden feature’s size is 16. The second layer in
these actors is a modified GAT layer with one
attention head, where the hidden feature’s size
depends on the quantity of segment edges and
cloud clusters. We use Adam optimizer with the
same learning rate of 0.0005 for the actor and the
critic and train with a minibatch size of 128. The
target networks are updated with t = 0.005. We
employ a replay buffer of size 50000 and adopt
a reward discount factor of 0.99. The average U
is considered as a key performance index and
obtained by averaging over 1000 episodes.

Results and Discussions
As shown in Fig. 3, the DDPG hybrid presents
a good convergence, and its average U varies
between 17.5 and 19.3 after sufficient training
episodes. As discussed previously, U stands for
the combined efficiency improvement of the
delay and energy consumption brought by one
unit price compared with the complete local com-
puting. More intuitively, take 19 for example, it
means that by spending every one unit price for
offloading, the average utility of the policy gener-
ated by the DDPG hybrid is 19 times better than
the average utility when tasks are all processed
by the vehicles themselves. At the same time, we
can see that the task offloading and resource allo-
cation-deep deterministic policy gradient-action
branching (TORA-DDPG-AB) algorithm based on
CNN and DNN performs poorly. The reason is
that the CNN and DNN cannot effectively extract
relational features and fail to limit the object of
resource allocation to the corresponding neigh-
borhood, resulting in some idle resources, while
the effective task exceeds the delay or energy
consumption limit by not being allocated suffi-
cient resources.

FIGURE 2. Dual-Agent DRL Framework.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on September 23,2023 at 16:17:46 UTC from IEEE Xplore. Restrictions apply.

IEEE Wireless Communications • August 2023152

Since common DNNs and CNNs cannot natu-
rally confine the resource allocation within a cer-
tain neighborhood, the DNN- or CNN-based DRL
frameworks have difficulty in satisfying allocation
constraints meanwhile guaranteeing performance.
Thus, the proposed DDPG hybrid is compared
with the following schemes:
• RAO + Avg: random all off loading plus average

resource allocation.
• RAO + Ran: random all off loading plus random

resource allocation.
• RO + Avg: random offloading at random pro-

portion plus average resource allocation.
• RO + Ran: random offloading at random pro-

portion plus random resource allocation.
Figures 4a and b demonstrate how the arrival

rate affects the system utility. Though the aver-

age U of the DDPG hybrid slides slightly when
the task number increases, the DDPG hybrid
outperforms the other four schemes. Figures 4c
and d show how the utility of different schemes
changes along with a growing workload. The utili-
ty of all fi ve schemes falls as the workload of each
task rises, meanwhile the DDPG hybrid presents
a better performance compared to others. It is
to be noted that Figs. 4a and c show how diff er-
ent schemes perform as parameters of group A
change, and Figs. 4b and d correspond to tasks
of group B. Similar utility performance and trend
indicate that the system can balance the two
groups of tasks.

We then extend the experiment to systems of
a larger scale. Some parameters are specifi ed in
Table 1, where SE is the abbreviation of a seg-
ment edge and CC is the abbreviation of a cloud
cluster. Other parameters that are not specified
remain the same as specified in the last subsec-
tion. As shown in Fig. 5, the proposed method
performs well even when the number of vehicles
becomes more than two hundred.

chALLenGes And future dIrectIons
This article provides a new solution for the end-
edge-cloud collaboration system with dynamic multi-
to-multi relationship, but the proposed solution still
has room for improvement and optimization.

noveL GrAph neurAL networks
The DRL algorithm proposed in this article is
based on improving the GAT network, but the
GAT network is the most basic of many graph neu-
ral networks. A graph neural network is a research
hotspot in recent years. Many researchers have
proposed new graph neural networks suitable for
different needs, such as Heterogeneous Graph
Attention Network (HAN), Heterogeneous Graph
Structural Attention Neural Network (HetSANN),
Knowledge Graph Attention Network (KGAT),
etc. Whether these new graph neural networks
can be used to further improve performance or
solve problems beyond the scope of the system
model proposed in this article is worthy of further
exploration and research.

uLtrA-dense muLtI-to-muLtI reLAtIonAL systems
This article conducts simulation experiments on
small-scale and extended systems and achieves
good performance, but for systems with ultra-
dense multi-to-multi relationships, the perfor-
mance of the algorithm is not ideal. How to
design the task off loading and resource allocation
optimization algorithm suitable for ultra-dense sys-
tems is also the focus of the next work.

dependencIes between tAsks
This article only considers some off loading tasks,
but does not consider the graph task off loading
class that has interdependence between subtasks
and task segmentation constraints. Since this arti-
cle has modeled the system as a graph, if we
want to consider the graph task on the basis of
this system graph, it is equivalent to further mod-
eling each node of the system graph as a graph.
How to deal with the relationship of nested
graphs and achieve effi cient feature extraction is
a complex task, which will be further studied in
the follow-up work.

FIGURE 3. Training curves of the DDPG hybrid.

FIGURE 4. Average U over diff erent arrival rates and workloads.

TABLE 1. Parameters of diff erent systems.

Small-scale Middle-scale Large-scale

SE Qty. 7 13 25

f (r)SE (GHz) [150, 200] [450, 500] [750, 800]

f (r)CC (GHz) 300, 400 900, 1000 1500, 1600

m1 [5, 20] [50, 70] [100, 120]

m2 [5, 20] [50, 70] [100, 120]

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on September 23,2023 at 16:17:46 UTC from IEEE Xplore. Restrictions apply.

IEEE Wireless Communications • August 2023 153

concLusIon
In this article, we investigated the main factors lim-
iting a task offloading performance and proposed
an end-edge-cloud orchestration scheme for vehic-
ular task offloading. To cope with dynamics and
delay-sensitiveness of the system, to capture the
availability features between vehicles and segment
edges or cloud clusters, and to confi ne the resource
allocation of segment edges or cloud clusters with-
in their respective neighborhoods, we proposed a
novel DDPG hybrid with GAT and action branching.
Numerical results demonstrated that the proposed
scheme achieves a good performance and can be
applied to a diff erent-scale system.

AcknowLedGment
This work was supported in part by the Nation-
al Natural Science Foundation of China under
Grants 62071306 and 61871433, in part by
the Mobility Program for Taiwan Young Scien-
tists under Grant RW2019TW001, and in part
by the Shenzhen Science and Technology Pro-
gram under Grants JCYJ20200109113601723,
JSGG20210420091805014 and JSG 2021080215
4203011.

references
[1] U. of OULU, “Key Drivers and Research Challenges for 6G

Ubiquitous Wireless Intelligence,” 6G white paper, 2015.
[2] J. Shi et al., “Priority-Aware Task Off loading in Vehicular Fog

Computing Based on Deep Reinforcement Learning,” IEEE
Trans. Vehic. Tech., vol. 69, no. 12, Dec. 2020, pp. 16067–81.

[3] Z. Zhou et al., “When Vehicular Fog Computing Meets
Autonomous Driving: Computational Resource Manage-
ment and Task Offloading,” IEEE Network, vol. 34, no. 6,
Nov./Dec. 2020, pp. 70–76.

[4] H. Ke et al., “Deep Reinforcement Learning-Based Adaptive
Computation Off loading for MEC in Heterogeneous Vehic-
ular Networks,” IEEE Trans. Vehic. Tech., vol. 69, no. 7, Jul.
2020, pp. 7916–29.

[5] N. Kiran et al., “Joint Resource Allocation and Computation
Off loading in Mobile Edge Computing for SDN Based Wire-
less Networks,” J. Commun. Networks, vol. 22, no. 1, Feb.
2020, pp. 1–11.

[6] Q. Yu et al., “A Cybertwin Based Network Architecture for
6G,” Proc. 2nd 6G Wireless Summit, 2020, Levi, Finland,
pp. 1–5.

[7] K. Zhang et al., “Deep Learning Empowered Task Off loading
for Mobile Edge Computing in Urban Informatics,” IEEE
Internet of Things J., vol. 6, no. 5, Oct. 2019, pp. 7635–47.

[8] Z. Ning et al., “Joint Computing and Caching in 5G-Envisioned
Internet of Vehicles: A Deep Reinforcement Learning-Based
Traffi c Control System,” IEEE Trans. Intelligent Transportation
Systems, vol. 22, no. 8, Aug. 2021, pp. 5201–12.

[9] Z. Ji et al., “Computation Off loading for Edge-Assisted Feder-
ated Learning,” IEEE Trans. Vehic. Tech., vol. 70, no. 9, Sept.
2021, pp. 9330–44.

[10] Z. Yu et al., “Joint Task Off loading and Resource Allocation
in UAV-Enabled Mobile Edge Computing,” IEEE Internet of
Things J., vol. 7, no. 4, Apr. 2020, pp. 3147–59.

[11] T. P. Lillicrap et al., “Continuous Control With Deep Rein-
forcement Learning,” Proc. Int’l. Conf. Learning Representa-
tions, May 2–4, 2016, San Juan, Puerto Rico, pp. 1–14.

[12] P. Veličković et al., “Graph Attention Networks,” Proc. 2018

Int’l. Conf. Learning Representations, Apr. 30–May 3, 2018,
Canada, pp. 1–12.

[13] Q. Yu et al., “Cybertwin: An Origin of Next Generation
Network Architecture,” IEEE Wireless Commun., vol. 26, no.
6, Dec. 2019, pp. 111–17.

[14] L. Huang et al., “Deep Reinforcement Learning for Online
Computation Off loading in Wireless Powered Mobile-Edge
Computing Networks,” IEEE Trans. Mobile Computing, vol.
19, no. 11, 1 Nov. 2020, pp. 2581–93.

[15] A. Tavakoli et al., “Action Branching Architectures for Deep
Reinforcement Learning,” Proc. Association for the Advance-
ment of Artifi cial Intelligence, Feb. 2–7, 2018, USA, pp. 1–9.

bIoGrAphIes
YEJUN HE [SM’09] (heyejun@126.com) is a Full Professor with
College of Electronics and Information Engineering, Shenzhen
University, Shenzhen, China, where he is the Director of Guang-
dong Engineering Research Center of Base Station Antennas
and Propagation, and the Director of Shenzhen Key Laboratory
of Antennas and Propagation. His research interests include
wireless communications, antennas, and radio frequency. He is
a Fellow of IET

XIAOXU ZHONG (1031772642@qq.com) obtained her Master
Degree of Information and Communication Engineering in Shen-
zhen University, Shenzhen, China, in 2022. Her research interests
include wireless communications, mobile edge computing and AI.

YOUHUI GAN (youhuigan@qq.com) is currently pursing his Mas-
ter Degree of Communication Engineering in Shenzhen Uni-
versity, Shenzhen, China. His research interests include wireless
communications, mobile edge computing, and AI.

HAIXIA CUI [SM’22] (cuihaixia@m.scnu.edu.cn) is a Full Professor
with the School of Electronics and Information Engineering,
South China Normal University, Foshan 528225, China, and also
with the School of Physics and Telecommunication Engineering,
South China Normal University, Guangzhou 510006, China. Her
research interests are in the areas of cooperative communica-
tion, wireless resource allocation, 5G/6G, and antennas.

MOHSEN GUIZANI [S’85, M’89, SM’99, F’09] (mguizani@ieee.org)
is currently a Professor of Machine learning at Mohamed Bin
Zayed University of Artifi cial Intelligence (MBZUAI), UAE. He has
authored/co-authored over 1,000 technical papers in top journals
and conferences. He has been granted more than 10 U.S. patents.
He was listed as a Clarivate Analytics Highly Cited Researcher in
computer science in 2019, 2020, 2021, and 2022. He has won
several research awards, including the 2015 IEEE Comunications
Society Best Transaction Paper Award, and Best Paper Awards
from top conferences such as IEEE ICC and IEEE Globecom.

FIGURE 5. Average U over various-scale systems.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on September 23,2023 at 16:17:46 UTC from IEEE Xplore. Restrictions apply.

