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Abstract—Traditional centralized machine learning uses a
large amount of data for model training, which may face some
privacy and security problems. On the other hand, federated
learning (FL), which focuses on privacy protection, also faces
challenges such as core network congestion and limited mobile
device (MD) resources. The computation offloading technology
of mobile edge computing (MEC) can effectively alleviate these
challenges, but it ignores the effect of user mobility and the unpre-
dictable MEC environment. In this paper, we first propose an
architecture that combines digital twin (DT) and MEC technolo-
gies with the FL framework, where the DT network can virtually
imitate the statue of physical entities (PEs) and network topol-
ogy to be used for real-time data analysis and network resource
optimization. The computation offloading technology of MEC
is used to alleviate resource constraints of MDs and the core
network congestion. We further leverage the FL to construct DT
models based on PEs’ running data. Then, we jointly optimize
the problem of computation offloading and resource allocation to
reduce the straggler effect in FL based on the framework. Since
the solution of the objective function is a stochastic programming
problem, we model a Markov decision process (MDP), and use
the deep deterministic policy gradient (DDPG) algorithm to solve
this objective function. The simulation results prove the feasibility
of the proposed scheme, and the scheme can significantly reduce
the total cost by about 50% and improve the communication
performance compared with baseline schemes.

Index Terms—Computation offloading, resource allocation,
federated learning, deep deterministic policy gradient (DDPG).
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I. INTRODUCTION

W ITH the commercial development of the
fifth-generation (5G) communication technology,

the total number of mobile users in the world is increasing.
According to [1], the number of mobile users will grow to
nearly 7.5 billion by year-end 2025. In recent years, the
success of artificial intelligence (AI) can be applied to data
analysis and mining of mobile devices (MDs). Meanwhile,
the emergence of mobile edge computing (MEC) alleviates
the time delay caused by communicating directly with the
cloud servers [2]. The emergence of these technologies has
brought the dawn for large-scale commercial use of the 5G
technology.

Most of the current studies use MEC to alleviate the com-
munication time delay and energy consumption (TDEC). In
other words, most current studies utilized the MEC com-
putation technology or combined MEC and other technolo-
gies to assist user device to compute the offloading task,
thereby providing high quality of service to the devices.
Ding et al. [3] considered non-orthogonal multiple access
(NOMA) and MEC-assisted computation of user devices,
and applied geometric programming to jointly optimize time
allocation and transmission power to reduce the energy con-
sumption of computational task offloading. In [4], the authors
integrated the MEC into the Internet of Things (IoT), which
enables the IoT devices of limited computation capabili-
ties and energy to offload their computation-intensive and
delay-sensitive tasks to the MEC server, and maximized
the energy efficiency for offloading under the maximum
delay constraints of IoT devices by jointly optimizing radio
and computing resource allocation. Fang et al. [5] consid-
ered a multi-user multi-base station NOMA-MEC network
system with imperfect channel state information (CSI), where
the MEC server can assist users to execute the task com-
putation, and they jointly optimized the computation task
assignment, power allocation and user-server association to
minimize the energy consumption. Besides, they used the
bi-level programming method to derive optimal closed-form
expressions of task assignment and power allocation, and then
designed a two-sided matching algorithm to obtain a user-
server association. Hou et al. [6] proposed a joint allocation
of wireless resources and MEC computing resources (JAWC)
based on the spectrum radius estimation theory to reduce
the total time delay of the system, where the MEC server
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can assist to compute offloading by clients and the algorithms
include the Spectral-Radius-based Interference Cancellation
heuristic clustering algorithm and convex optimization theory.
Additionally, the energy harvesting (EH) modules deployed
by MDs always serve continuous task requests, and the fine-
grained offloading scheme of the MEC system can greatly
reduce the time delay of computing user tasks. For exam-
ple, Guo et al. [7] studied the partial computation offloading
scheme of multiple MDs realized by EH in MEC, and used
a new algorithm based on Lyapunov optimization to obtain
the optimal solution. However, the scheme only considered
a single MEC server. In addition, unmanned aerial vehicle
(UAV)-assisted MEC is also a promising method. In [8], the
authors considered a UAV-enabled MEC system. They utilized
UAVs to power IoT devices based on wireless power trans-
fer technology, and proposed a new workflow model based
on time division multiple access (TDMA) that allows paral-
lel transmission and execution in UAV-enabled systems, and
used the convex optimization theory and flow-shop schedul-
ing techniques to jointly optimize IoT device association,
computing resource allocation, UAV hovering time, wireless
powering duration and IoT device service sequence to min-
imize the total power consumption of UAV. However, the
trajectory optimization problem of UAV is not considered.
In [9], [10], [11], the authors also considered UAV-assisted
MEC, and combined UAV trajectory optimization and resource
allocation or task offloading strategies to minimize the problem
of UAV energy consumption.

On the other hand, in addition to the TDEC problem, pri-
vacy protection is also a topic of concern to users. Therefore,
most studies combine federated learning (FL) [12] with MEC,
that is, users only need to upload the model parameters of
local training, not to share the entire dataset, which pro-
vides the possibility for privacy protection. Meanwhile, the
addition of MEC servers also alleviates the core network con-
gestion problem in cloud servers. For example, Luo et al. [13]
introduced a new hierarchical federated edge learning (HEFL)
framework to migrate the model aggregation from the cloud to
the edge server, and jointly performed computing and resource
allocation optimization in the state of end-edge association, to
minimize the global cost. Wang et al. [14] theoretically ana-
lyzed the convergence bound of a distributed gradient descent
(GD) and proposed a control algorithm to balance a local
model update and a global parameter aggregation under a
given resource budget, thereby minimizing the loss function.
On this basis, the authors of [15] demonstrated the conver-
gence of the end-edge-cloud three layer FL system. And the
system can make the model converge faster to achieve a better
trade-off between communication and computation. To achieve
a communication-efficient FL, some studies employed deep
compression techniques [16]. Mills et al. [17] proposed a
communication-efficient federated averaging (FedAvg) algo-
rithm. The algorithm is achieved by reducing the number of
rounds for convergence and compression technologies. Chen
et al. [18] designed a user selection scheme to select appro-
priate users to participate in the FL training, and combined
with wireless resource allocation to improve the model con-
vergence speed. In [19], the authors theoretically defined the

impact of each round of device scheduling, and derived the
convergence bounds of FL in terms of the number of commu-
nication rounds and the number of selected devices. Besides,
some privacy-preserving strategies for FL, such as differential
privacy, secure multi-party computation, are studied in [20],
[21], [22].

Although the distributed structure of parallel training sig-
nificantly improved the training efficiency, the training of FL
is limited by the slowest client. To address this problem, most
studies are based on asynchronous updates, so that each par-
ticipant does not need to wait for others. Xie et al. [23]
showed us a new asynchronous FL optimization algorithm and
found a hybrid hyperparameter to control the error caused by
asynchrony. In [24], [25], the authors used an asynchronous
model update approach to reduce time delay due to the slowest
user and improve the transmission efficiency. However, most
studies on edge computing and FL are independent, and the
related work about FL usually use edge servers as parame-
ter aggregators or schedulers. The powerful computing power
of the server is neglected in the FL model training. On the
other hand, the computing resources of the MDs are limited.
Offloading partial data to the server can effectively reduce the
computing burden of the MDs. Therefore, inspired by [26],
we introduced the MEC computation offloading technology
to relieve the straggler effect of MDs. At the same time, in
order to alleviate the problem that network dynamics become
unpredictable due to the heterogeneous deployment of edge
servers, we combine MEC, FL and DT. The DT module can
monitor network changes in real time and provide perception
data for network decision-making modules. DT is a promising
technique that instantly maps PEs to digital space, and real-
time capture dynamic state information of PE. In the current
studies, DT has been applied in most scenarios. For exam-
ple, Sun et al. [27] deployed a DT network in the system.
The DT network of edge servers estimates the state of edge
servers, and the trained task data for offloading strategy pro-
vided by the DT network of the entire system. Lu et al. [24]
proposed an architecture of the DT edge networks (DITENs),
which combined DT and MEC to efficiently optimize the
industrial IoT network. In [28], the authors proposed a new
DT network to model the network topology and random task
arrivals in industrial IoT systems. In addition, DT has been
applied in the Internet of Vehicles. Hui et al. [29] proposed a
DT-enabled scheme to promote collaborative and distributed
automatic driving. And the designed architecture can assist
autonomous vehicles to make collaborative driving decisions.
The authors of [30] proposed a DT-enabled on-demand match-
ing scheme for multi-task FL to resolve the two-way selection
problem between task requesters (TR) and the roadside units
(RU) in the scenario of multi-TR and multi-RU.

In view of the above observations, our motivation is to use
the DT network to build a digital model of PEs, and use the
MEC computation offloading technology to solve the resource
constraints of MDs. At the same time, the addition of edge
servers can also reduce the pressure on the core network. We
further use FL to construct the DT model based on the oper-
ating data of PEs. Specifically, we can obtain digital models
of MDs and small base stations (SBSs) and collect the status
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information through the DT network deployed on the macro
base station (MBS) server, so as to conduct real-time data
analysis and prediction. The state awareness and real-time
analysis of the DT network state can help MDs make deci-
sions, which select reliable SBS servers to offload tasks. Then
SBS servers and MDs participate in the FL model training.
Next, the SBS server aggregates the model parameters and
uploads partial model parameters of aggregation to the MBS
aggregation server for a global model training. In addition,
we jointly optimize the computation offloading and resource
allocation by deep reinforcement learning (DRL) algorithm to
solve the problem of limited MDs resources, thus reducing
the straggler effect and improving the overall efficiency of FL
training. All in all, the main contributions of this paper are
summarized as follows.

• Design of a DT-MEC-enabled FL framework: We pro-
pose a framework that integrates the DT with the MEC
network to build a numerical model. The architecture can
build a network topology and provide perception data
for decision-making modules. In addition, by the DT
network, the MBS server can perceive the error dataset
uploaded by MDs in the FL training, and adaptively
adjust the regulatory factor to reduce the failure rate of
the FL model training.

• Offloading a strategy based on DT-MEC-enabled FL
framework: The SBS servers utilize the idle computing
power to help MDs update offloaded tasks in model train-
ing. We formulate the computational offloading problem
as an optimization problem and minimize the weighted
sum of time delay and energy consumption (WSTDEC)
of MDs on the basis of achieving the accuracy of the FL
model, i.e., the MDs cost, to obtain an optimal offloading
strategy.

• Resource allocation: We adopt a deep deterministic policy
gradient (DDPG), based on a deep reinforcement learn-
ing (DRL) algorithm, to solve the optimization problem
of the computational offloading and the resource alloca-
tion. Numerical results show that the proposed method
outperforms benchmark polices.

The remainder of this paper is organized as follows.
Section II introduces the construction of the communication
and computation model as well as the description of the
problem. Section III presents a solution of offloading deci-
sion and resource allocation problem. Section IV gives the
simulation results and analysis. A conclusion can be drawn in
Section V.

II. SYSTEM MODELS AND PROBLEM DESCRIPTION

We consider a multi-server, multi-user heterogeneous cel-
lular network scenario as shown in Fig. 1. The model
architecture consists of physical entities (PEs) and a DT
network. Specifically, it includes a MBS M deploying a DT
network and aggregation server (AS), J SBSs with servers
{S1,S2,S3, . . . ,Sj , . . . ,SJ } and I resource-constrained MDs
{M1,M2,M3, . . . ,Mi , . . . ,MI }. Assuming that each MD has
an intensive task to process at each time slot, we denote the
set of tasks by Πi = {Di ,Ci , tmax }. Di represents the task

Fig. 1. DT-enabled FL-MEC system model.

size of the MD Mi, Ci represents the number of CPU cycles
required to process one task, and let tmax denote the maximum
tolerable delay of the MD. Note that each SBS is equipped
with a server that not only has the ability to aggregate model
parameters, but also has computing capabilities. In our model,
we establish real time mapping and feedback between the DT
network of the system and the MEC environment to obtain the
transformation laws of the environment. The DT network does
not need to know the implementation details of MDs and edge
servers in the system, and it can build a digital representation
system similar to the real environment to obtain the system
performance estimate. Besides, the FL can build the DT model
of the MDs according to the operation data of the MDs. And
the DT model is built by the FL scheme can reduce the data
transmission cost and protect the data privacy. In addition, the
scheme can further adopt the MEC computation offloading
technology to enable the MDs of limited computation capa-
bilities and energy to offload their computation-intensive and
delay-sensitive tasks to the network edge, thus alleviating the
straggler effect and limited computation resource of MDs in
FL. For convenience, the relevant notations used in this paper
are summarized in Table I.

A. DT Network

Integrating the DT network into the MEC network model
can monitor the state of the entire MEC network system in real
time. The model can also transfer the collected data directly to
decision-making modules that need to make decisions. In our
system, the DT network is deployed on the MBS. The MBS
can use a DT network to virtually imitate the MEC network
topology, monitor the network model and obtain node param-
eters in real time. Besides, the MBS with the DT network can
provide SBSs in the edge service layer with MDs information
within SBS’ service range and provide decision to help SBSs
and MDs perform dynamic associations. At the same time,
resource allocation strategies in the DT network can be applied
to the actual network. Let Λij denote the dynamic associa-
tion between SBSs and MDs. That is, if MD Mi connects
to SBS Sj , the connection can be recorded in the end-edge
association set Λij . Then, the virtual object of the DT can be
represented as:

DT (t) =
{
�(�),Di (t), fi (t), fj (t),Λij

}
(1)
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TABLE I
RELEVANT NOTATIONS

where Di (t) is the set of tasks of MD Mi , fi (t) is the com-
puting frequency of the MD Mi, and fj (t) is the computing
frequency of the SBS Sj in a time slott. The DT builds the
corresponding global model F (�) with the help of the FL,
and continuously interacts with the actual network to maintain
consistency.

B. Generation and Detection of FL Model for the DT
Network

Since the edge computing (EC) can be limited by the com-
munication resources because of uploading a bigger dataset,

and the FL may be limited by computational resources due to
the local updating. The above may cause the straggler effect.
Therefore, the combination of the two can realize a balance
between the communication and computing [26]. The goal of
the FL and MEC is to build a global model for the DT network.
The global model can react according to the state of the PEs,
guide the dynamic association of the SBSs and MDs, judge
whether the user is offline or not. Meanwhile, when the MDs
upload the error dataset, the MBS with the DT network can
receive the signal in time, and assist the system to adaptively
adjust the model accuracy.
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In the process of building the model, the role of the edge
server is to assist in the computing and the model aggrega-
tion. The MD Mi offloads a part of the task to the associated
SBS server Sj to compute and the remaining tasks are com-
puted locally, and then the SBS server Sj aggregates the model
parameters computed and uploaded by the MD. The SBSs
server can use the aggregated model parameters to update
the model. Finally, the SBS server Sj uploads the aggregated
model parameters to the MBS server for the total model aggre-
gation, and the MBS server broadcasts the aggregated model
parameters to each MD Mi .

Let D = {Θi ,Θ
′
i}|D|

i=1 denote the local training dataset of
each MD, where Θi is the i-th input sample and Θ′

i is the
corresponding labeled output of Θi for FL task. |D| represents
the total number of local training samples. The overall goal
of the process is to minimize the global model loss �(�)

�(�) =
1

|D|
J∑

j

�j
(
�j
)

(2)

The loss function of SBS Sj is given by

�
(
�j
)
=

1

ϑi |D|
∑

f
(
�j
)

(3)

where �j represents the model parameters in the SBS Sj ,
ϑi |D| denotes the size of offloading data by MD Mi . For MDs
Mi , the loss function on the remaining dataset is given by

�(�i ) =
1

(1− ϑi )|D|
∑

f (�i ) (4)

After the model parameters in the MDs and SBSs are
updated, the SBSs server can aggregate its own model param-
eters and the model parameters are uploaded by the MDs.
Therefore, the global model in the SBSs server can be
updated by

� =
1

|D|

[
∑

i∈I

(
(1− ϑi )|Di |�i + ϑi |Di |�j

)
]

. (5)

However, if the MDs offload the incorrect dataset to the SBSs,
it may affect the update of the global model parameters. If the
non-training dataset is denoted by �, we have

�′ = 1

|D|

[
∑

i∈I

(
(1− ϑi )|Di |�i + ϑi |Di + �|�j

)
]

. (6)

As shown in Fig. 2, taking the MNIST dataset [32] as an
example, if other datasets are uploaded, the difference between
the predicted value and the actual value will become larger.
According to Loss = 1

D

∑D
i=1(Y − Yp)

2, non-training
datasets’ participation can increase the loss of the model
training and affect the accuracy of the global model.

Remark 1 (The Convergence Performance of (6)): In our
scheme, the SBSs server helps the MDs to update the model
parameters together, and the scheme convergence performance
is equivalent to the centralized GD algorithm. However, if the
MDs upload the non-training dataset to SBSs, the accuracy of
the model can be affected. After broadcasting the global model
parameters, we have �i (t) = �j (t) = �(t)(t = 1, 2, 3 · · · ).

Fig. 2. The process of training MNIST dataset and non-training dataset.

Specifically, according to the above (6) and the linearity of
the gradient operator, we have

�′(t) = 1

|D|

[∑
i∈I

(
(1− ϑi )|Di |�i (t) + ϑi |Di + �|�j (t)

)]

=
1

D

[∑
i∈I

(
(1− ϑi )|Di |(�i (t)− η∇�(�i (t − 1)) + ϑi |Di

+ �|(�j (t − 1)− η∇�
(
�j (t − 1)

)))]
=

∑
i∈I |Di |�(t − 1)− η

∑
i∈I |Di |∇�(�(t − 1))

D

+

∑
i∈I |ϑi�|�(t − 1)− η

∑
i∈I |ϑi�|∇�(�(t − 1))

D
= Γ(�(t − 1)− η∇�(�(t − 1)) (7)

where Γ(ϑi , �) = Φ(1+
∑

i∈I
ϑi�
D ), Φ is a regulatory factor.

By comparing the difference between � and �′ and adjusting
the size of Φ adaptively to achieve the expected accuracy. In
this case, the failure rate of the global model training can be
lowered and the cost can be reduced.

C. Communication Model

The model parameter transmission and task offloading can
be achieved by wireless communications between MDs and
SBSs. Meanwhile, the inter-base station and the co-channel
interference can be suppressed by the orthogonal frequency
division multiple access (OFDMA) technology. Given the
communication resource B, the task offloading and the trans-
mission of model parameters need to be performed in the
allocated channels. Due to the strong computing power of the
MBS, we ignore the TDEC of downloading the global model.
In this process, we define ζi as the communication allocation
ratio for MD Mi , the transmission rate of the offloaded task
and the model parameters from the MD Mi server to the SBS
Sj is expressed as

νi = ζiB log(1 + Υi ) (8)

where Υ =
pi |ι0|d−α

ij

N0
represents the signal-noise ratio. ι0

indicates the Rayleigh fading channel coefficient and ι0 ∼
CN(0, 1) is a complex Gaussian random variable, α is the path
loss coefficient, N0 is the background noise power, pi is the
transmission power of MD Mi , and dij indicates the distance
between the MDs and the SBSs. Then, the SBS server aggre-
gates the model parameters that it calculates and the model
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parameters uploaded by the MDs. Finally, the SBS server
uploads the aggregated model parameters to the MBS server
for a global model aggregation. The transmission rate of model
parameters from the SBS server to the MBS server is given
by

νj =
∑

i⊆j

ζiB log

(
1 +

pj hj
N0

)
(9)

where pj indicates the transmission power of the SBS Sj , hj
is the channel gain between SBS Sj and MBS, and i ⊆ j
represents all MD Mi that select the SBS Sj .

Accordingly, considering that each (Θi ,Θ
′
i ) has the same

size, and let ϑi denote the ratio of the offloaded task of MD
Mi , the communication TDEC of the offloaded task between
MD Mi and SBS Sj are formulated as

tcomi =
ϑi |Di |
νi

(10)

ecomi = pi t
com
i . (11)

At the same time, we use tcomm
i and ecomm

i to repre-
sent the TDEC of the MDs transmission model parameters,
respectively. We have

tcomm
i =

φ

νi
(12)

ecomm
i = pi t

comm
i . (13)

where φ is the size of the model parameters for the training
of the remaining tasks uploaded by MD Mi .

Additionally, the transmission TDEC of the model param-
eter between SBS Sj and MBS is

tcomm
j =

φ

νj
. (14)

ecomm
j = pj t

comm
j . (15)

D. Computational Model

In our system, the computational model includes the TDEC
of the local computation and the computation of the SBS
server. Because the server has a strong computation power,
we ignore the computing energy consumption of the server.

Accordingly, the model of the computation delay and the
energy consumption can be given as follows. Let κi (1 −
ϑi )|Di | represent the total number of CPU cycles to run one
local iteration, and e denote the estimatation error. We denote
the allocated CPU frequency ratio of MD Mi for computation
by ξi fi . Therefore, the estimated computation time delay of
MD Mi can be formulated as

̂tcmp
i = E (ϕ)

κi (1− ϑi )|D̂i |
ξi f̂i

, (16)

where the real value of Di is equal to
̂Di
1+e and the real value

of fi is equal to
̂fi

1+e , and the estimated energy consumption
of MD Mi can be given by

̂e
cmp
i = E (ϕ)λi (1− ϑi )|D̂i |

(
ξi f̂i

)2
, (17)

where λi denotes the effective capacitance coefficient, ξi is
the allocated CPU frequency of MD Mi for computation, and
the E (ϕ) = σ log( 1ϕ ) represents a number of local iterations
to achieve a local accuracy ϕ [13].

Correspondingly, the estimated computation time delay of
SBS Sj can be formulated as

̂tcmp
j = E (ϕ)

κjϑi |D̂i |
χi f̂j

, (18)

where χi fj is the computing resource allocated to MD Mi to
compute the offloaded task ϑi |fj | and the real value of fj is

equal to
̂fj

1+e .
At the end, the total TDEC of the system can be given by

T = R(ψ,ϕ)
(
max

{
max

{
tcomi + t

cmp
j , t

cmp
i

}}

+max
{
tcomm
i

}
+max

{
tcomm
j

})
(19)

E = R(ψ,ϕ)
∑

i

(
e
cmp
i + ecomi + ecomm

i + ecomm
j

)
(20)

where R(ψ,ϕ) =
�(log( 1

ψ
))

1−ϕ is the communication rounds to
achieve the required model accuracy ψ, and � is a constant
that depends on the learning task [13].

III. PROBLEM FORMULATION AND SOLUTION

A. Problem Formulation

Considering the above computational model and the com-
munication model, our goal is to minimize the WSTDEC of
the system and achieve a model accuracy in an iterative pro-
cess. By the joint optimization of variables, the MDs can
reduce the straggling effect and reduce the use of electricity in
the FL process. We define ε ∈ [0, 1] as the importance weight-
ing indicator of the system TDEC. Then the optimization
problem is expressed as follows:

P1 : min
ϕ,ψ,ζi ,ξi ,χi ,ϑi

ε ∗ T + (1− ε) ∗ E (21)

s. t. max
{
max

{
tcomi + t

cmp
j , t

cmp
i

}}

+max
{
tcomm
i

} ≤ tmax , (21a)

tcomi ≤ tm , (21b)

ϕ,ψ ∈ (0, 1), (21c)

f min ≤ ξi fi ≤ f max , (21d)

0 < ξi < 1, (21e)

pmin ≤ pi ≤ pmax , (21f)
∑

i

ζi = 1, ζi ∈ (0, 1), (21g)

∑

i

χi fj ≤ fj , χi ∈ (0, 1), (21h)

0 < ϑi < 1, (21i)

where (21a) and (21b) represent the maximum tolerable time
delay and transmission time delay constraints, respectively.
Equation (21c) indicates the accuracy of the local model and
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the global model. Equation (21d)-(21f) denote the computation
capacity and the transmission power of MDs constraints, respec-
tively. Equation (21g) means that the allocated communication
resource cannot exceed the total bandwidth. Constraint (21h)
requires that the sum of the computing resource allocated by
each SBS server cannot exceed the total SBS server computing
resource. Finally, our model is partial offloading, and the ratio
of offloaded task size cannot exceed the limit of (21i).

Although P1 is a stochastic optimization problem which
needs to determine the computation resource and commu-
nication resource at each time slot, it is difficult to solve
P1 by applying the classical convex optimization algorithm.
According to (19) and (20), the wireless communication
resource allocation and computation resource allocation jointly
determine the size of the system cost, so they are coupled
together. Furthermore, the complex coupling and mixed com-
binatorial characteristics between the optimization variables
make it difficult to solve P1. At the same time, P1 in our opti-
mized offloading strategy is greatly related to our optimized
computing resource and the communication resource. This
brings challenges to designing the efficient resource allocation
and offloading strategies.

The DDPG is a powerful DRL algorithm for solving a large
continuous action space. Based on the Actor-Critic network,
the DDPG algorithm uses the network for fitting a policy func-
tion in the action output to directly outputs the action, and
can output continuous action with a large action space. In
addition, the DDPG algorithm has a low optimization compu-
tational complexity and can be used to solve a mixed-integer
nonlinear programming problem. Therefore, we propose a
DRL-based method to solve the optimization problem of the
computation offloading strategy and resource allocation strat-
egy. Because the model parameter upload between MDs and
SBS and between SBS and MBS are related to the communi-
cation resource, during the computation offloading process in
a certain time slot, we can obtain a minimal TDEC of this part
after the communication resources are optimized. Therefore,
for ease of calculation, we simplify the P1 problem to

P2 : min
ϕ,ψ,ζi ,ξi ,χi ,ϑi

ε ∗ Tuser + (1− ε) ∗ Euser (22)

s. t. max
{
max

{
tcomi + tcmp

j , tcmp
i

}}

≤ tmax −max
{
tcomm
i

}
, (22a)

tcomi ≤ tm , (22b)

ϕ,ψ ∈ (0, 1), (22c)

f min ≤ ξi fi ≤ f max , (22d)

0 < ξi < 1, (22e)

pmin ≤ pi ≤ pmax , (22f)∑

i

ζi = 1, ζi ∈ (0, 1), (22g)

∑

i

χi fj ≤ fj , χi ∈ (0, 1), (22h)

0 < ϑi < 1, (22i)

where Tuser = R(ψ,ϕ)(max{max{tcomi + tcmp
j , tcmp

i }})
and Euser = R(ψ,ϕ)(ecomi + e

cmp
i ).

B. Selection of Local Iterations

The FedAvg algorithm [31] allows us to increase the com-
putation by increasing the degree of parallelism and increasing
the computation in each participant to reduce the number of
communication rounds required to train the model. The algo-
rithm selects a number of participants with a proportion in
each iteration, and calculates the gradient and the loss func-
tion on the dataset owned by these participants. The specific
process of FedAvg is as follows.

Step 1 (Initialize global model parameters): The aggregation
server initializes the global model parameters and broadcasts
them to randomly selected MDs. Each MD has its own local
dataset.

Step 2 (Update MDs’ model parameters): Each selected MD
uses its own local dataset to update the received model param-
eters to obtain new model parameters �it+1, and send the new
model parameters to the AS. The model parameters of MDs
are updated by

�it+1 ← �it − ε
I∑

i=1

ni
n
gi (23)

where
∑I

i=1
ni
n gi = ∇f (�it ), ε is the learning rate, ni is the

number of samples on MD Mi , and n is all selected MDs.
Step 3 (Aggregation of the global model): The AS aggre-

gates the model parameters uploaded by the MDs in terms
of a weighted average. Then, the server can obtain a new
model �jt+1.

�jt+1 =
I∑

i=1

ni
n
�it+1 (24)

Step 4: Repeat the above steps until the model converges.
Based on the FedAvg algorithm, we take the MNIST dataset

as an example for simulation. As shown in Fig. 3, we can find
that under the premise of a certain number of data sets, more
local rounds have a little effect on the accuracy of the model.
Therefore, we have E = 7 to achieve the accuracy of beyond
90% by the trade-off between the local energy consumption
and the model accuracy.

C. Optimization of the Offloading Strategy

We utilize mathematical methods to obtain the optimal solu-
tion of the offloading strategy. As we all know, in the case
of a certain amount of tasks, the amount of offloaded tasks
is inversely proportional to the amount of remaining tasks.
Therefore, the corresponding local computation time delay
t
cmp
i is inversely proportional to the sum of the SBS com-

putation time delay tcmp
j and the transmission time delay

tcomi . According to the characteristics of functions in mathe-
matics, when tcmp

i = tcomi +tcmp
j , we can obtain the minimal

function value, i.e., min{max{tcomi + tcmp
j , tcmp

i }}, so as to
obtain the offloaded strategy that minimizes the TDEC. All in
all, according to

min
{
max

{
tcomi + tcmp

j , tcmp
i

}}
,

t
cmp
i = tcomi + t

cmp
j , (25)
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Fig. 3. Model loss and accuracy of different local iterations.

we have

E (ϕ)
κi (1− ϑi )|Di |

ξi fi
=
ϑi |Di |
νi

+ E (ϕ)
κjϑi |Di |
χi fj

−→ ϑi =
E (ϕ)νiχi fjκi

E (ϕ)νiχi fjκi + ξi fiχi fj + E (ϕ)ξi fiνiκj
(26)

It can be deduced from (26) that the optimal offloading pro-
portion is related to the allocation of the computation resources
and the communication resources. Therefore, our optimization
problem becomes

P3 : min
ϕ,ψ,ζi ,ξi ,χi ,ϑi

ε ∗ Tuser + (1− ε) ∗ Euser (27)

s. t. (22a)−(22h), (27a)

ϑi =
E (ϕ)νiχi fjκi

E (ϕ)νiχi fjκi + ξi fiχi fj + E (ϕ)ξi fiνiκj
(27b)

D. DT-Simulated Network Environment

To solve P3, we adopt the DDPG algorithm for calculation.
The algorithm first models a Markov decision process (MDP)
and then explores actions. The MDP is the optimal decision
process of a stochastic dynamic. That is, according to each
observed state, select an action from the available action set
to make a decision, randomly select the next state, and obtain
the state transition probability. Therefore, the MDP modeling
process is as follows. We use the DT network to build the
network state, and then the network state is output to the agent
module, as shown in Fig. 4.

Fig. 4. DT-enabled framework of DDPG-based dynamic offloading and
resource allocation.

Inspired by [28], the DT network adopts the existing K-
nearest neighbor classification algorithm and the location
prediction algorithm to predict the location of MDs and SBSs,
which is more convenient to collect the network environment
location information. After collecting the network environment
information, the DT network updates the association decision
between MDs and SBSs, the channel state, etc. Finally, the
DT network transmits the collected state information to the
DDPG agent module. In this way, the agent can obtain the
state information at the beginning of time slot t, including
the task size, computing frequency, CPU cycles, transmis-
sion power, channel state of MDs, and total computation and
communication resources of SBSs. We have

�(t) = {D(t), κ(t),F,P(t),H(t),B,Λ(t)} (28)

where D(t) = [D1, . . . ,Di , . . . ,DI ] denotes 1 × I
task data size vector, κ(t) = [κ1, . . . , κi , . . . , κI ]
denotes 1 × I computing density vector, and P(t) =
[p1, . . . , pi , . . . , pI ] denotes 1 × I transmission power vec-
tor at time slot t, respectively. F is the computation
resource of SBSs; B is the communication resource of SBSs;
H(t) = [h11, . . . , h1i , . . . , h1I ], . . . , [hJ1, . . . , hJi , . . . , hJI ]
denotes J × I wireless transmission channel state information
matrix, and Λ(t) denotes 1 × I set of device-server associa-
tion, which is obtained by choosing the closest SBSs.

Correspondingly, the output of the DDPG network, i.e., the
action of the agent, can be expressed as

∂(t) = {ζ (t), ξ(t),χ(t)} (29)

where ζ (t) is a vector that represents the allocation proportion
of the communication resource, ξ(t) is a vector that repre-
sents the allocation proportion of the computation resource,
and χ(t) is a vector that represents the allocation proportion
of SBSs’ computation resource.

Notably, all variables in the action space are continuous.
Therefore, we can exploit the policy gradient algorithm, i.e.,
DDPG, to explore the policy. After performing action ∂(t),
the DT network estimates the immediate reward and randomly
initials the state information �(t + 1). And the estimates
immediate reward is defined as

γet (�(t), ∂(t)) = −(ε ∗ Tuser + (1− ε) ∗ Euser ) (30)

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 12,2023 at 10:10:10 UTC from IEEE Xplore.  Restrictions apply. 



HE et al.: COMPUTATION OFFLOADING AND RESOURCE ALLOCATION 1715

In the next time slot, the DT network transmits the updated
state to the DDPG agent. Then the goal of the DDPG agent
is to maximize the cumulative reward

γt = maxE

[
T∑

t=1

γet (�(t), ∂(t))

]

(31)

E. Resource Allocation Based on the DDPG Algorithm

We use the DDPG algorithm to optimize the cumulative
reward. The DDPG algorithm is an off-policy algorithm based
on the Actor-critic, which combines the related technologies of
both the deterministic policy gradient algorithm and the deep
Q-learning network (DQN) algorithm. Thus, The DDPG algo-
rithm has a good effect in solving continuous actions, where
the actor network and critic network are composed of the train
network and target network, respectively. The action parame-
ters of the actor network π(
 | θ) need to be modified so that
the actor network is more likely to obtain the maximum Q,
and the actor policy is updated as

∇θJ (θ) =
1

L

∑
∇∂Q(
t , ∂ | μ) |∂=π(�t ) ∇θπ(
t | θ) (32)

The update of the critic network draws on the methods of
DQN and double Q-learning, where two neural networks are
used for calculating Q. And the critic target network generates
Q tg according to the next state and the next action. Then, the
critic network’s weights μ are updated by minimizing a loss
function

Loss =
1

L

∑
(yt −Q(
t , ∂t | μ))2 (33)

where yt = γet + δQ tg (
t+1, π
tg (
t+1 | μtg ) | θtg ). L is the

mini-batch and δ is the discount factor. Finally, target networks
are updated by

θtg ← τθ + (1− τ)θtg
μtg ← τμ+ (1− τ)μtg (34)

where τ is the soft update coefficient. And the specific
algorithm is shown in Algorithm 1.

Generally, the main computational complexity comes from
the training and inference of the neural network and the oper-
ation of experience playback in the DDPG algorithm, both
the Actor and Critic network use neural network. Assuming
that the input dimension of the Actor network is D, the num-
ber of neurons in the hidden layer is H, the output dimension
is A, the input dimension of the Critical network is D + A,
the number of neurons in the hidden layer is H, and the out-
put dimension is 1. And assuming that the gradient descent
algorithm is used for optimization, and the number of iter-
ations for optimization is N. The computational complexity
of the training and inference of the neural network is: Actor
network is O(N ∗ D ∗ H + H ∗ A) and Critic network is
O(N ∗ (D + A) ∗ H + H ). In addition, assuming that the
size of the experience pool is M and the number of samples
sampled from it is B each time, the computational complex-
ity of the experience playback operation is: complexity of
storing experience samples is O(M ∗ (D + A + 1)) and
complexity of the random sampling from experience pool is
O(B ∗ (D + A+ 1)).

Algorithm 1: Task Offloading and Resource Allocation
Based on the DDPG Algorithm

Initialize actor-critic network with θ and μ,
and target actor-critic network with θtg and μtg .
Initialize replay buffer Rb .
for episode = 1:Em do

Initialize a random process Ω for ∂ to explore.
Receive initial state information 
1 from DT
network.
for step = 1:T do

According to the current policy and added
exploration noise N to choose resources action
∂t .
Execute resource action ∂t and reward γet and
new state information 
t+1 from DT network.
Store (
t , ∂t , γet ,
t+1) in Rb .
Sample a random mini-batch of L
(
i , ∂i , γei ,
i+1) from Rb .
Set yi , update critic network by minimizing the
loss (33),
and use the sampled policy gradient to update the
actor network policy by (32). Update the target
actor-critic networks by (34).

end
end

IV. SIMULATION RESULTS AND ANALYSIS

In this section, we present the simulation results on a real
dataset and a heterogeneous dataset. As for the real dataset,
we choose the MNIST dataset to evaluate the convergence
speed and accuracy of the model. As for the heterogeneous
dataset, we use synthetic datasets to represent the heterogene-
ity between the data, where the datasets are used to evaluate
the TDEC minimization problems of our model. In a heteroge-
neous dataset, the dataset size among MDs follows the uniform
distribution of Di ∈ [100, 150] KBytes.

A. Regulatory Factor Effect on FL

We take a dataset of handwritten digits, i.e., MNIST, and
change the number of samples among 100 MDs. Based on
the experimental setup of [31] and [33], we use a deep neural
network (DNN) with two fully connected layers to build the
model. We follow the method in [26] to split the MNIST data
unbalanced into IID and non-IID. For IID, the entire dataset is
shuffled and then divided into 100 parts. For non-IID, we first
sorted the dataset by numerical label, divided it into 200 shards
of size 300, and randomly allocated 2 shards to each of the 100
MDs. Referring to the original FL scheme, we may randomly
select some MDs to participate in the FL training.

We perform simulations on the basis of the FedAvg algo-
rithm. Suppose the number of the uploaded non-training
sample as � = 10. As shown in Fig. 5 and Fig. 6, the dif-
ferent performances are achieved by the different values of
regulatory factor Φ in the iid and non-iid, respectively, where
the “Without Φ” scheme illustrates that if MDs upload non-
training data sets, the FL model can result in a failure to train
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Fig. 5. The convergence performance of proposed scheme in IID.

Fig. 6. The convergence performance of the proposed scheme in non-IID.

and produce some system cost. However, if an appropriate
regulatory factor Φ is selected, the model accuracy can reach
the expected target value.

TABLE II
SIMULATION PARAMETERS

B. Performance of Computation Offloading and Resource
Allocation

1) Simulation Settings: We set up the simulation parame-
ters for the performance evaluation of the system model as
follows. We have one MBS with AS, and four SBSs with AS
and a computation server. In addition, the total number of MDs
with computation capabilities is set as I = 12. Assuming that
all channels follow the Rayleigh slow fading, the path loss
coefficient is set to α = 3. The communication source is set
to B = 2× 107Hz. And the background noise power is set as
N0 = 10−12 W. Meanwhile, the computing density of MDs
follows a uniform distribution within [300, 500] cycles/bit. The
minimum and maximum computing resources of MDs are set
to 0.1 and 1 (GHz).

We perform the simulation results using Python 3.7, Parl
1.3.1 and Paddlepaddle 1.6.3. The DDPG algorithm param-
eters are as follows: Actor-Critic network has two fully
connected hidden layers with 64 neurons and adopts the ReLU
function as the activation function. Then, we set the input
dimension of the Actor network to 10 × I. “10” denotes the
sum of 4 × I and 6 × I, where the 4 × I denotes the channel
gain between UDs and SBSs, and 6 × I represents other six-
state dimensions. In addition, the output layer of the Actor
network adopts a sigmoid function, and the output layer of
the Critic network is a linear neuron. The values of network
hyperparameters and other parameters are listed in Table II.

2) Performance and Discussion: To the best of our knowl-
edge, there is no existing work that considers our proposed
communication scenarios. Therefore, we cannot compare our
research with similar research attempts. We compare the
proposed scheme with other baseline schemes as follows.

The convergence graph under several different schemes is
shown in Fig. 7. For the sake of observation, the value of
our P3 objective function represents the total cost of MDs,
and the total cost of MDs is equal to the negative value of
the cumulative reward of the agent. In Fig. 7, the “Proposed
scheme without B & F” represents the joint optimization of the
total computation resource allocation of SBSs and computa-
tion offloading strategy; the “Proposed scheme without Fs”
represents the joint optimization of computation offloading
strategy, the communication resource and the local compu-
tation resource. We can see that all three converge, and
in terms of the total cost, the “Proposed scheme” scheme
outperforms both benchmarks because it can simultaneously
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Fig. 7. Total cost of MDs with different schemes.

Fig. 8. Total cost of MDs v.s. different computing density.

optimize the computation offloading strategy, the communica-
tion resource, the local computation resource, and the total
computation resource of SBSs. In addition, the “Proposed
scheme” is better than “Without DT”, because the DT network
helps collect the digital information, which can reduce the
time delay of unreliable communications between the MDs
and the server, where “Without DT” means disabling the DT
network.

Fig. 8 and Fig. 9 show the impact of the computational
load on the system performance. The total cost of MDs under
all schemes increases with increasing the computing density
and the task data size. As we can see, with the resources,
too high computing density and task data size can reduce
the average acquired resource of MDs, causing a computa-
tional burden and a communication congestion, thus affecting
the final performance. In any case, our scheme still shows
a better performance because of the joint optimization of
the computational offloading strategy and resource alloca-
tion. Specifically, in order to achieve a model accuracy of
beyond 90%, we define the number of local rounds E=7 in
the FL process. And under the total communication resource
B = 2 × 107 Hz and the total computation resource of the
SBSs F = 15 × 109 Hz, our scheme achieves a consump-
tion cost average reduction by 20%, 7.4%, 56% and 11% as

Fig. 9. Total cost of MDs v.s. different task data size.

shown in Fig. 8 compared with the “Proposed scheme without
B & F”, “Proposed scheme without Fs”, “Without offloading”
and “Multiple DQNs” algorithm, respectively. Meanwhile, our
scheme also shows a better performance in Fig. 9, where
“Without offloading” is based on the traditional FL, that is,
all tasks of all users are calculated locally, instead of using an
edge server to assist in the computation. Moreover, because
our proposed scheme introduces a DT network, no matter
how the computing intensity and task data size change in
Fig. 8 and Fig. 9, the cost of the “Proposed scheme” is always
lower than that of the “Without DT” scheme. Because the DT-
disabled offloading module always estimates the information
of candidate edge servers through queries, and the DT-enabled
scheme only needs to store the digital status of these servers
to estimate their the computing capacity. Additionally, inspired
by [34], we use a multi-DQN network to dynamically allocate
resources discretely, i.e., continuous action discretization. The
DQN algorithm plays an important role in solving discrete
actions and reducing the output dimension. However, the sim-
ulation results show that the “Multiple DQNs” scheme is not
the best choice for solving our problem. Fig. 8 shows that the
DDPG algorithm favors the continuous action to our proposed
scheme.

The estimation error of the DT network may be affected by
many factors, such as the uncertainty of the model assumptions,
data quality, changes in the system operating environment, the
complexity of the model and the amount of the training data.
We assume that the error is 1%, 5% and 10%, respectively.
From Fig. 10, we can see that even if there is an estimation error
between the estimated value and the real value, the performance
result of the model is still better than that of the DT-disabled
technology, and even very close to the real value when the
estimation error is small. And the simulation results indirectly
prove the feasibility of the scheme.

Fig. 11 shows that different schemes achieve different
total costs with increasing MDs. The number of MDs
ranges from 6 to 24. Under the system communication
resource B = 2 × 107 Hz and the total computation
resource of SBSs F = 15 × 109 Hz, we can observe
that with the increase of the number of MDs, the total
cost of six schemes also increases. The reason is that the
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Fig. 10. Total cost of MDs with different estimation error.

Fig. 11. Comparison of the total cost with the varying MD.

growth of MDs can lead to more offload requirements, thus
consuming more communication resource and computation
resource. Additionally, the “Proposed scheme” algorithm still
outperforms other benchmarks, where the “Proposed scheme”
algorithm performance is better than that of the “Multiple
DQNs” algorithm. The main reason is that the discretization
of continuous actions in DQN may lead the agent to skip bet-
ter actions during the exploration. This is why we choose the
DDPG algorithm instead of the DQN algorithm. Obviously,
the algorithm performance of the “Proposed scheme” is bet-
ter than that of “Without offloading” about 50% because the
local computation resource of MDs are limited. If the MEC
computing technology is not used to assist the MDs in task
computation, it can cause a large time delay and energy con-
sumption, and even increase the failure rate of a task training.
In addition, with the increase of the number of MDs, the
performance of the ‘proposed scheme’ is still better than that
of “without DT” under the condition of jointly optimizing the
computation offloading strategy and resource allocation strat-
egy. And the more MDs under the condition that the number
of servers is constant, the more obvious the performance effect
(the proposed scheme is better than the scheme without DT).
This is the reason why the number of MDs increases, the num-
ber of individuals who need to make decisions can increase,
accordingly, the total time delay of offloading the module can

also increase, because the offloading module needs to estimate
the servers information by query.

V. CONCLUSION

In this paper, we presented a DT-MEC-assisted FL frame-
work, where the DT network can provide input parameters
for the decision module (DRL agent) and identify for non-
training the dataset uploading in the FL process. Then, we
presented the problem of the computational offloading and
resource allocation. The stragglers can offload some tasks
to the SBSs to reduce the computational burden. We jointly
optimized the offloading strategy, the computation resource
and the communication resource to minimize the total system
cost and greatly improve the FL training performance. Since
the objective function is a non-convex stochastic program-
ming problem, we used the DDPG algorithm to solve the
problem of resource allocation and computational offloading.
Experimental results show the effectiveness of our scheme
and the proposed scheme outperformed baseline algorithms.
In addition, the cost of DT deployment involves many aspects,
such as the cost of data collection and preprocessing, algorithm
selection and optimization, hardware and software, human and
material resources in deployment and maintenance. Therefore,
it is meaningful to consider the performance cost trade-off of
DT in our future work.
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