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Abstract—Polarization transform limits the code length of
polarization-adjusted convolutional (PAC) codes to a power of
2, which hinders the flexible use of PAC codes. Shortening is
an important method to change the length of the PAC codes.
Systematic code makes it possible to select the shortened bit
flexibly. In this paper, we propose a flexible code length scheme
for shortened systematic PAC codes, where the proposed scheme
generates frozen set and shortened set based on Monte-Carlo al-
gorithm. Simulation results show that the Monte-Carlo algorithm
can significantly improve the performance in frame error rate
(FER), and the proposed shortening scheme can slightly improve
the performance in FER.

Index Terms—Polarization-adjusted convolutional codes, short-
ening, systematic encoding.

I. INTRODUCTION

Polar codes are the capacity-achieving codes for symmetric
binary-input memoryless channels proposed by Arikan in [1],
where the successive cancellation (SC) decoder with low-
complexity is used. However, the SC decoding algorithm for the
polar codes of finite-length shows weak performance. On the
one hand, the SC decoder is suboptimal. On the other hand,
polar codes have a poor minimum distance. In [2], Arikan
proposes cascading convolutional codes and polarization codes,
and uses sequential decoders, i.e., polarization-adjusted convo-
lutional (PAC) codes. PAC codes can better achieve capacity
allocation and reduce capacity loss under finite-length codes.
Due to the variable complexity of the Fano decoder, the SC list
(SCL) [3] decoder for PAC codes would be more practical.

The code length of PAC/polar codes is only allowed to be
a power of 2 due to the polarization matrix. The inflexibility
of code length is a major drawback in the practical use of
PAC/polar codes, which must be improved. Polar codes use
puncturing and shortening to achieve arbitrary code length,
which has the advantage of making decoding almost as complex
as the mother code. The same decoder is used for puncturing
and shortening, the difference being whether the decoder knows
the non-transmit bit and sets the corresponding log-likelihood
ratio (LLR) to zero and infinity. In general, shortening has good
performance at high code rates, while puncturing has good
performance at low code rates. In our work, we only consider
shortening at high code rates. Systematic PAC/polar codes are

consistent with the frame error rate (FER) performance of non-
systematic codes, and the bit error rate (BER) performance is
improved. Since the systematic codes are characterized by the
fact that the information bit appears as a part of the codeword,
the shortened bit can be encoded as a part of the information bit
so that the decoder knows the shortened bits [4]. Reversal quasi-
uniform puncturing (RQUP) in [5] and [6], a shortening rather
than a puncturing scheme, has been used in fifth-generation
mobile communications [7]. RQUP method for non-systematic
codes is applied in systematic codes, which can lead to potential
performance degradation. Specifically, the RQUP method of
the polar codes is for the polarization transform matrix, and
the systematic codes shortening method is for the systematic
codes generation matrix.

The FER/BER of the PAC codes depends largely on the con-
struction. In the SC decoder, the bit channels are sorted accord-
ing to their reliability, and the most reliable channel is selected
from them to transmit information bits. The Bhattacharyya
parameter is used in [1] to measure the reliability of the bit
channels. In [8], a Gaussian approximation (GA) is proposed
to estimate the LLR of each bit. However, in SCL decoding,
reliability ordering may not exist, i.e., there is no ordering that
allows the construction of arbitrary code rates [9]. Moreover, a-
mong many scenarios, the impact of shortening on construction
is not specifically considered. Recently, considering the effect
of cutoff rate on sequential decoding complexity, a Monte-Carlo
(MC) based construction of PAC codes was proposed. This
method can limit the average complexity of sequential decoding
[10]. Since Monte-Carlo construction focuses only on first bit
error (FBE), it is a widely practical approach. It can adapt to
various rates and code lengths, and is also suitable for various
concatenated coding schemes. Shortened set and frozen set can
be determined in a unified framework which is jointly designed
by the shortening pattern and the frozen bit positions [11].

In this paper, our main contributions are as follows.

• The matrix form of the systematic PAC codes is given for
further analysis of shortened bit selection.

• The Monte-Carlo construction is applied to the systematic
PAC codes, and an improvement scheme based on the
RQUP shortening scheme is proposed.
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The paper is organized as follows. Section II introduces the
coding and shortening of the systematic PAC codes. Section
III introduces the proposed optimization algorithm. Section IV
shows the numerical results. Section V draws the conclusions.

All algebraic operations are conducted over spaces {0,1}. vA
denotes a subvector (vi, i ∈ A) and GA,B denotes rows A and
columns B of the matrix G. The cardinality of a set is denoted
by |·|.

II. PRELIMINARIES

A. PAC Codes

The PAC codes have to be undergone convolutional opera-
tions and be undergone polarization transforms. The length of
PAC codes can be denoted as Nm = 2n. Let v,u ∈ {0, 1}Nm

represent the input of convolution operation, and the input of
polarization transform, respectively. A represents the positions
of Km information bits and Ac represents the positions of
Nm − Km frozen bits, and in general, the value of frozen
bit is fixed to 0. Information bits d = (d0, d1, ...dKm−1) are
assigned into vector v = (v0, v1, ...vNm−1), which is called
rate-profiling. The convolution operation is expressed as

u = vT, (1)

where T is an upper-triangular Toeplitz matrix. It is obtained
by cyclic shift of g = [g0, g1, ..., gc] with gi ∈ {0, 1}, 1 ≤
i ≤ c and g0 = 1. Sequential method implementations can be
computed by

ui =
c∑

j=0

gjvi−j = vi + si, (2)

where si = g1vi−1+g2vi−2+...+gcvi−c. Then, the polarization
transform can be calculated by

x = uL, (3)

where L is the generator matrix of polar codes. It is obtained

by F
⊗

ndefined as the n-th Kronecker power of F △
=

[
1 0
1 1

]
.

B. Systematic PAC Codes

For the systematic encoding of PAC codes, the data words d
appears as a part of the codewords x, i.e, xA = d. Systematic
codes can be generated based on vector and matrix multi-
plication, but complex arithmetic operations make the coding
impossible to use in practice. Proposition 2 in [4] gives an
encoding method for systematic codes with low-complexity.
Under certain restrictions, the original encoder of PAC codes
can be used to encode systematic codes. It can be calculated
by three steps

• uA = dLA,A, vA,Ac = f.

• Calculation of uAc and vA by sequential method{
vi = ui + si, i ∈ A
ui = vi + si, i ∈ Ac

and updates si.

• Calculate x using (3).

In order to use polar codes encoders, the above process must
satisfy LAc,A = 0 and LA,A = L−1

A,A.
The generation of codeword x is represented as

x = dG. (4)

Definition of matrix E(A) [12] is

E(A) = (Ei,j)
|A|−1Nm−1
i=0 j=0 , (5)

where Ei,j =

{
1, if j = Ai

0, otherwise
and A0 < A1 < ... <

A|A|−1.
Proposition 1: Given information set A. If f = 0, the

generation matrix of systematic PAC codes is (For brevity, A
in E(A) has been omitted)

G(A) = ELET (ETET )−1ETL. (6)

Proof : Observe (1) and (3), we need to prove that
dELET (ETET )−1E = v. We have

uA = vATA,A + vAcTAc,A = vATA,A

since vAc = 0. Thus vA = uAT−1
A,A (g0 = 1 and T is the upper-

triangular matrix, hence, TA,A is invertible.) Due to the property
of matrix E, LA,A = ELET ,TA,A = ETET . Since vAc = 0,
v = vAE. Thus

v = vAE = uAT−1
A,AE

= dLA,AT−1
A,AE

= dELET (ETET )−1E

C. Shortening of Systematic PAC Codes

For shortening, |S| bits of the codeword x are limited to the
fixed values, such as zero, i.e., xS = 0, where S is called the
shortening set, and K = Km − |S|. The code rate is R=K/N,
where N = Nm−|S|. For Systematic codes, xA = (d, 0) = d

′
,

where A = A ∪ S and |A| = |d| = K. We have x = d
′
G(A

′
).

Define the set I(b) as

I(b) = {j ∈ [0 : Nm − 1] : |Q(g:,j) \ S| = b}, (7)

where b ∈ {0, 1}, g:,j denotes column j of the matrix and
Q(g:,j) [5] denotes the index set of 1 position in g:,j . In order to
avoid additional complexity, we only consider I(0), I(1) ⊂ A

′

and |I(0)| = |S| , |I(1)| = K.
For example, Nm = 8 , Km = 6, g = [1, 0, 1, 1, 0, 1, 1], and

A
′
= {2, 3, 4, 5, 6, 7}. By Proposition 1, we have
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G(A
′
) =


1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1

 . (8)

If N = 5, S = {2, 4, 6} is not considered. Since I(0) =

{0, 2, 4, 6} ̸⊂ A
′

and |I(0)| = 4 ̸= 3. If N = 6, S = {2, 4}
is not considered. Since I(1) = {0, 3, 5, 6, 7} ̸⊂ A

′
and

|I(1)| = 5 ̸= 4.

III. PROPOSED SHORTENING SCHEME

This section briefly introduces the Monte-Carlo construction
and the RQUP scheme, and then proposes a new shortening
scheme of systematic codes for the Monte-Carlo construction.

A. Monte-Carlo Construction

Construction can be regarded as the process of select-
ing (Nm − Km) error prone bits at Nm locations and
fixing their values. The event of the occurrence of se-
quential decoding bit error at the i-th bit is Bi ={
(u, y) : û[0:i−1] = u[0:i−1], ûi ̸= ui

}
, where y is the output of

the channel. The block error event E is the union of Bi events.
Therefore, the probability of E can be expressed as

P(E) =
∑
i∈A

P (Bi) . (9)

The FBE is critical in construction [13]. Monte-Carlo scheme
only focuses on FBE. Its index is j = min(i) : vi ̸= v̂i. Under
the selected signa-to-noise ratio (SNR), multiple decoding is
performed to count the first error number of each bit. Then
the bits with the most errors for the first time can be removed
from the precomputed information set. Repeat this process until
Nm −Km frozen bits are selected.

B. RQUP Scheme

When using RQUP, the shortened set first selects the last
|S| bit, which is [Nm − |S| : Nm − 1], and then performs
bit-reversal permutation. Bit permutation causes the shortened
positions to be roughly uniform in the codeword, i.e., the
distance between any two neighboring shortened positions is
approximately the same [6]. Note that if the bit permutation
matrix BNm is considered, (3) can be modified as

x = uBNmL. (10)

Proposition 2: RQUP algorithm for systematic PAC codes
ensures that the decoder knows every bit in ui, i ∈ [Nm− |S| :
Nm − 1].
Proof : Since L−1 = L, equation (3) can be written as

u = xL. Rewrite Theorem10 in [6]: Since the lower-triangle
property of the matrix L, ui =

∑
i6j6Nm−1, Li,j=1

xj , Nm −

|S| 6 i 6 Nm − 1. If each bit xj , j ∈ [Nm − |S| : Nm − 1] is
set to a fixed value, each bit ui will be set to a fixed value.

C. Improved Algorithm

The construction of frozen set and shortened set can be
considered as an optimization problem. The complete set
{0, 1, ..., Nm−1} is divided into three sets, namely, information
set, frozen set, and shortened set, to minimize BER, FER, etc.
Without losing generality, we pay more attention to FER. This
optimization problem is given by

(Aopt, Sopt) = arg min
A,S⊂{0,1,...,Nm−1}

FER

s.t. |S| = Nm −Km

|A| = Km

A∪S = ∅.

(11)

To satisfy the low-complexity implementation of systematic
PAC codes, the selection of the frozen bit is only according
to the conditions mentioned in the Section II. The number of
first errors for each bit is obtained by Monte-Carlo simulation
and sorted. As shown in algorithm 1 function MC, where
Ain and Sin are the initial values of the information set and
the shortened set, respectively. In the absence of their initial
values, they are complete set and empty set, respectively. M
and P are the vectors composed of 0 and 1, where the 1s imply
the information or shortened positions. Function MonteCarlo
returns the number of FBE and FER at various code rates.
For more details of function MonteCarlo, we refer to [10].
Considering shortening, we skip the process of predicting the
set of information. The function argsort returns the index
sorted in ascending order. Q−1(·) is the inverse transformation
of Q(·).
Proposition 3: If the systematic PAC codes are shortened

using RQUP algorithm, vi, i ∈ [Nm−|S| : Nm−1] is not FBE.
Proof : Assume i ∈ [Nm − |S| : Nm − 1] and vi is

FBE. From (2), we have vi = ui + si ̸= v̂i = ûi + ŝi.
From Proposition 2, ui and ûi are know, i.e., ui = ûi, then
si ̸= ŝi. We have si + ŝi =

∑
k∈D

gk(vi−k + v̂i−k) = 1, where

D = {k ∈ [1, c] : gk ̸= 0}. This indicates that there is at least
one pair of (vi−k, v̂i−k), vi−k ̸= v̂i−k (i − k < i), which is
inconsistent with the assumption that vi is FBE.
Proposition 3 shows that the RQUP algorithm fixes the

shortened set in optimization problem (11), because of the
Monte-Carlo construction only selects FBE. In other words, the
RQUP shortening set protects some bits from being selected in
the frozen set, which has potential performance implications.
An alternative algorithm for RQUP is presented in function
shorten of algorithm 1, where mllrs is the reliability of
each bit. In order to maintain the characteristics of quasi-
uniform shortening, each shortened bit was selected at each
interval. Due to the limitation of the coding method of the
systematic codes, the shortened bits cannot belong to the frozen
set. Therefore, one selection does not ensure that enough bits
can be selected, and multiple selections must be made. Note
that the characteristic of RQUP is in the case of bit permutation,
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Algorithm 1: Construction of Shortened
Systematic PAC Codes

Input: SNR, N, K, g
Output: A, S
Nm ← 2⌈log2 N⌉ Km ← K +Nm −N

ib ← Nm −Km + 1
(M,P, FER)←MC({0, 1...Nm − 1}, ∅)
for b← Nm −Km to 1 then

if FER[b− 1] < FER[b] < FER[b+ 1] do
ib ← b
break

(M
′
, P

′
, FER

′
)←MC(Q(M [ib]),Q(P [ib]))

in1← argmin(FER)

in2← argmin(FER
′
)

if FER[in1] < FER
′
[in2] then

A← Q(M) S← Q(P )
else

A← Q(M ′
) S← Q(P ′

)
Function MC (Ain, Sin)

i← 0 S← Sin

FER[0 : |Ain| −Km]← {0}
M [0 : |Ain| −Km][0 : Nm − 1]← {0}
M [i][0 : Nm − 1]← Q−1(Ain)
P [0 : |Ain| −Km][0 : Nm − 1]← {0}
P [i][0 : Nm − 1]← Q−1(Sin)
while |Q(M [i])|+Nm −N > Km do

if Sin ̸= ∅ then
S← shorten(Q(M [i]) ∪Q(P [i]))

P [i+ 1][0 : Nm − 1]← Q−1(S)
(h, FER[i])←MonteCarlo(Q(M [i]), S)
J ← argsort(−h)
for j ∈ J do

B← Q(M [i]) ∪ S \ j
if LB,BLB,B = I|B| and LBc,B = 0 then

M [i+ 1]← Q−1(B \ S)
i← i+ 1

break
(h, FER[i])←MonteCarlo(Q(M [i]), S, g)
return (M, P, FER)

Function shorten (C)
←
S ← ∅
while(|S| < Nm −N ) do

step← ⌈log 2(Nm/(Nm −N − |
←
S |))⌉

for i← Nm/step to 1 do
i0 ← (i− 1) ∗ step
i1 ← i ∗ step− 1
←
llrs← argsort(

←
mllrs[i0 : i1])

for j ∈
←
llrs do

if i0 + j ∈
←
C then

←
S ∪ {i0 + j}
break

return S

so our scheme also considers bit permutation when selecting
bit. ”←” in the algorithm 1 represents this process and the
final returned result is inversely transformed. In the proposed
shortening scheme, the frozen bit takes precedence over the
shortened bit for selection. However, this inequality may result
in performance degradation. For each frozen bit selection, we
record its FER. The frozen set corresponding to the last extreme

point of the FER is used as the initial value, and the Monte-
Carlo construction is performed again. In our work, we use SC
and SCL decoder for Monte-Carlo simulation, specifically{

L SC, i ∈ H,

SCL, i ∈ {0, 1, ..., Nm − 1} \H,
(12)

where H = {i ∈ [0 : Nm − 1] : |λi
0| = ∞} can be calculated

by algorithm A in [14] and λi
0 is the i-th bit of 0 stage of the

factor graph.

IV. NUMERICAL RESULTS

In this section, we give the FER performance of the system-
atic shortening codes. The reliability is calculated using ensity
evolution with Gaussian approximation (DEGA), and the LLRs
of all coded bits are set to the values corresponding to the
design SNR of additive white Gaussian noise (AWGN) channel.
For all shortened scenarios, SC and SCL decoders are used,
and the list size L=32. The codes involved in transmission is
modulated by binary phase shift keying (BPSK) and transmitted
on AWGN channel. Convolution polynomial g is 0o133 in octal
format and c=6. The maximum number of iterations is 107, and
the maximum number of error frames is 102.

For comparison, the performance in [15] is also considered.
The systematic PAC codes are implemented with low complex-
ity, and S $ P[N−K:Nm−1], where P is the indices sequence
of Nm polarised subchannels in ascending order of reliability.

Fig. 1 shows the performance of PAC codes with N=96
and |S|=32. We have the following observations. For code
rates R=0.5 and 0.75, Monte-Carlo construction is better than
DEGA construction. When Monte Carlo construction is used,
the proposed scheme has a performance advantage at a code
rate of R=0.5, and its performance is close to that of the RQUP
scheme at a code rate of R=0.75. Fig. 2 shows the performance
of PAC codes with N=192 and |S|=64. The results show that
when the code length is 192, the Monte-Carlo construction
is better than DEGA. Monte-Carlo construction can improve
the performance of systematic PAC codes. For R=0.75, the
proposed scheme has performance advantages at high SNR and
has performance disadvantages at low SNR. For R=0.5, the
proposed scheme has performance close to RQUP.

Fig. 3 is the FER performance change during the Monte-
Carlo construction process. It can be observed that in most
cases, the FER performance improves as the code rate drops.
However, the FER performance occasionally deteriorates with
the drop of code rate. Therefore, it is necessary to fix the
shortening set and then update the frozen set in the proposed
shortening scheme.

V. CONCLUSION

In this study, we proposed the joint constructions of short-
ened set and frozen set of PAC codes with flexible codes
length and code rates. Monte-Carlo construction method used
for shortened systematic PAC codes. Then, we further proposed
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Fig. 1. FER performance with the PAC codes for N=96, |S| = 32 in AWGN
channels.
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Fig. 2. FER performance with the PAC codes for N=192, |S| = 64 in AWGN
channels.

a scheme to replace the RQUP scheme in the systematic PAC
codes and maintain the the characteristics of quasi-uniform.
The proposed scheme dynamically selects the shortened set,
and is comparable to RQUP scheme. The construction method
considering only FBE is not applicable to RQUP scheme and
there may be other uniform shortening schemes that improve
performance. Under the RQUP algorithm, another construction
method should be proposed for the systematic PAC codes.
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