舒国响,博士
长聘副教授,特聘研究员,留学博士生导师
办公室:沧海校区致腾楼917
E-mail:gxshu@szu.edu.cn
Google Scholar学术主页
https://scholar.google.com/citations?hl=zh-CN&user=UWaxRjQAAAAJ
Researchgate学术主页
https://www.researchgate.net/profile/Guoxiang_Shu
舒国响博士,江西赣州人,永利集团长聘副教授、特聘研究员、硕士生导师、留学博士生导师、深圳市海外高层次人才、南山区领航人才、深圳市孔雀计划团队核心成员、IEEE Senior Member、《真空电子技术》青年编委、Electronics/Micromachines客座编辑。2017年博士毕业于电子科技大学,期间在英国University of Strathclyde进行博士联合培养。长期从事电磁场与微波技术学科领域的教学与科研工作,研究方向是大功率毫米波太赫兹电子器件。目前已发表SCI论文60余篇,包含IEEE Trans. 41篇;其中,一作或通讯作SCI论文34篇(含IEEE. Trans. 23篇,一作26篇),包括IEEE EDL 2篇、IEEE TED 12篇、IEEE T-MTT 5篇、IEEE T-TST 3篇、APL 1篇。在PIERS、CSRSWTC、中国微波周等国内外学术会议作分会场特邀报告11次。授权中国发明专利8项。主持国家级、省级等各类科研项目14项,包括国家重点研发计划项目课题、国家自然科学基金面上项目、青年项目等国家级项目5项,主持科研经费过千万元;参与国家重大专项等国家重大/重点项目3项。指导本科生/研究生荣获多项奖励荣誉,包括中国电子学会优秀硕士学位论文、国际学术会议优秀论文奖、研究生国家奖学金、优秀毕业研究生、深大百篇优秀本科毕业论文等。
教授课程:微波技术、电子科技专业综合实验(微波方向)等
招收学术型硕士:电子科学与技术(电磁场与微波技术方向)
招收专业型硕士:集成电路工程(射频及毫米波集成电路设计)
招收留学博士:信息与通信工程(Information and Communications Engineering)
主要研究方向
1) 大功率毫米波/太赫兹振荡器/放大器
2) 毫米波/太赫兹无源器件
3) 微型真空晶体管太赫兹源
4) 毫米波生物传感器及介质复介电常数测试
主持的科研项目
1) 国家重点研发计划项目课题(2023YFF0719302,2023-2026,133万元)
2) XXX国家级项目(2021.11-2023.10,100万元)
3) 国家自然科学基金面上项目(62371307,2024.01-2027.12,49万元)
4) 国家自然科学基金青年项目(61901277,2020.01-2022.12,24.5万元)
5) XXX国家级重点项目课题(2023.06-2026.05,17.55万元)
6) 广东省自然科学基金-面上项目(2022A1515011480,2022-2024, 10万元)
7) 广东省自然科学基金-面上项目(2021A1515011242,2021-2023, 10万元)
8) 广东省教育厅青年创新人才项目(2018KQNCX215,2019 -2021, 5万元)
9) 深圳市基础研究自由探索项目(JCYJ201803051244,2019-2022, 50万元)
10) 深圳市基础研究面上项目(JCYJ20190808145801658, 2020-2023,30万元)
11) 深圳市高端人才启动项目(827/00036205, 2019.1-2021.12,300万元)
12) 永利集团科研仪器研制培育项目(2023YQ007, 2023-2025,80万元)
13) 教育部重点实验室开放基金(2022.6-2023.12,5万元)
14) 永利集团青年教师基金(2018046,2018.01-2022.12, 20万元)
一作/通讯作代表性SCI论文
1) G. Lin, G. X. Shu (通讯作者, 本人硕士生一作), et al., "Design and experimental verification of 0.34-THz rectangular TE10 to TEn0 mode converters," IEEE Transactions on Microwave Theory and Techniques, Early Access, 2024.
2) G. X. Shu, et al., "A terahertz-band rectangular TE10 to circular TE01 mode converter," IEEE Transactions on Electron Devices, Early Access, 2024.
3) G. X. Shu, et al., "Cosimulation and cold test verification of a 220-GHz sheet beam traveling-wave tube amplifier," IEEE Transactions on Electron Devices, vol. 71, no. 2, pp. 1253-1260, Feb. 2024.
4) J. Liao , G. X. Shu (通讯作者,本人硕士生一作), et al., "Study of a 0.3 THz extended interaction oscillator based on the pseudospark-sourced sheet electron beam," IEEE Transactions on Plasma Science, vol. 51, no. 8,pp. 2199-2204, Aug. 2023.
5) G. X. Shu, et al., "Study of a wideband TE21/TE01 mode converter for sub-terahertz gyrotron traveling-wave tubes," IEEE Transactions on Plasma Science, vol. 51, no. 7, pp. 2105-2111, Jul. 2023.
6) J. Lin, G. X. Shu (通讯作者,本人硕士生一作), et al., "Study of a terahertz-band rectangular TE30/TE40/TE50 mode converter with the same exciting topology," IEEE Transactions on Microwave Theory and Techniques, vol. 71, no. 3, pp. 1216-1226, Mar. 2023.
7) X. Gong, W. Wang, G. Liu*, Y. Cao, Y. Wang, W. Jiang, Y. Yao, G. X. Shu (通讯作者), J. Wang, Y. Luo, "An improved overmoded-waveguide method for the accurate measurement of dielectric properties in the sub-terahertz band," J. Infrared Milli Terahz Waves, 44:265–280, 2023.
8) G. X. Shu, et al., "A sub-THz high-order mode backward wave oscillator driven by pseudospark sourced multiple sheet electron beams," IEEE Transactions on Electron Devices, vol. 69, no. 9, pp. 5216-5222, Sep. 2022.
9) G. X. Shu, et al. “Demonstration of a wideband and compact input/output coupling structure for sub-terahertz sheet-beam traveling wave amplifiers,” IEEE Transactions on Terahertz Science and Technology, vol. 12, no. 4, pp. 401-408, Jul. 2022.
10) G. X. Shu, et al. “Design and measurement of terahertz-band rectangular TE10 to circular TEn1/TE0p/TE1q mode converters,” IEEE Transactions on Microwave Theory and Techniques, vol. 70, no. 6, pp. 3009-3019, 2022.
11) J. C. He, G. X. Shu (通讯作者,本人硕士生一作), et al. “Design of compact and easy-to-fabricate power coupling structures for sub-terahertz sheet beam traveling wave amplifiers,” IEEE Transactions on Microwave Theory and Techniques, vol. 70, no. 5, pp. 2622-2630, 2022.
12) J. C. Liao, G. X. Shu (通讯作者,本人硕士生一作), et al. “A terahertz band TE20 mode input/output coupling structure for dual-sheet-beam traveling wave tubes,” IEEE Transactions on Plasma Science. vol. 50, no. 5, pp. 1360-1368, 2022.
13) J. C. Ren, G. X. Shu (通讯作者,本人硕士生一作), et al. An easy-to-fabricate circular TE₂₁/TE₀₁ mode generator,” IEEE Transactions on Electron Devices, vol. 68, no. 12, pp. 6532-6537, 2021.
14) G. X. Shu, et al. “Dispersion and dielectric attenuation properties of a wideband double-staggered grating waveguide for sub-terahertz sheet-beam traveling-wave amplifiers,” IEEE Transactions on Electron Devices, vol. 68, no. 11, pp.5826-5833, 2021.
15) G. X. Shu, et al. "Design and microfabrication of an interaction circuit for a 0.3THz sheet beam extended interaction oscillator with multiple-mode operation," IEEE Transactions on Terahertz Science and Technology, vol. 11, no. 4, pp. 425-432, 2021.
16) G. X. Shu, et al. “Design, microfabrication, and characterization of a subterahertz-band high-order overmoded double-staggered grating waveguide for multiple-sheet electron beam devices,” IEEE Transactions on Electron Devices, vol. 68, no. 6, pp. 3021-3027, Jun. 2021.
17) G. X. Shu, et al. “Study of H-band high-order overmoded power couplers for sheet electron beam devices,” IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 6, pp. 2251-2258, Jun. 2020.
18) G. X. Shu, et al. “Design and measurement of a terahertz band rectangular TE20 mode power coupling structure for high-order overmoded multiple sheet electron beam devices,” IEEE Electron Device Letters, vol. 41, no. 6, pp. 920-923, Jun. 2020.
19) G. X. Shu, et al. “Design, fabrication, and cold test of a high frequency system for an H-band sheet beam travelling wave tube,” IEEE Transactions on Terahertz Science and Technology, vol. 10, no. 3, pp. 292-301, May. 2020.
20) G. X. Shu, et al. “Wideband rectangular TE10 to TEn0 mode converters for terahertz-band high-order overmoded planar slow-wave structures,” IEEE Transactions on Electron Devices, vol. 67, no. 3, pp. 1259-1265, Mar. 2020.
21) G. X. Shu, et al. “Design and measurement of a terahertz double staggered grating waveguide with an arc-shaped beam tunnel,” IEEE Transactions on Electron Devices. vol. 66, no. 11, pp. 3970-3975, Nov. 2019.
22) G. X. Shu, et al. “Design and millimeter-wave measurement of a wideband power coupling structure for sheet electron beam devices,” IEEE Transactions on Electron Devices, vol. 66, no. 7, pp. 3171-3177, Jul. 2019.
23) G. X. Shu, et al. “Experimental demonstration of a terahertz extended interaction oscillator driven by a pseudospark-sourced sheet electron beam,” Appl. Phys. Lett., vol. 112, no.3, pp.033504-1-033504-4, 2018. (Top期刊,Editor's picks,Top Articles in Device Physics)
24) G. X. Shu, et al. “Demonstration of a planar W-band, kW-level extended interaction oscillator based on a pseudospark-sourced sheet electron beam,” IEEE Electron Device Letters, vol. 39, no. 3, pp. 1-4, Mar. 2018. (电子器件领域权威期刊,封面报道,Editor's picks)
25) G. X. Shu, et al. “Study of performance improvement for a Q-band sheet beam traveling-wave tube,” IEEE Transactions on Electron Devices, vol. 65, no. 9, pp.3970-3975, Sep. 2018.
26) G. X. Shu, et al. “Simulation study of a high-order mode terahertz radiation source based on an orthogonal grating waveguide and multiple sheet electron beams,” Optics Express, vol. 26, no. 7, pp. 1-9, Apr. 2018.
27) G. X. Shu, et al. “Terahertz backward wave radiation from the interaction of high-order mode and double sheet electron beams,” Journal of Physics D: Applied Physics, vol. 51, no. 5, pp. 055107-1- 055107-6, 2018.
28) D. Chen, B. Zhang, X. He, X. L. Huang, G. Liu*, G. X. Shu(通信作者),“Terahertz biosensing metamaterial absorber for virus detection based on spoof surface plasmon polaritons,” International Journal of RF and Microwave Computer-Aided Engineering, vol. 28, pp. 1-7, May. 2018.
29) G. X. Shu, et al. “Study of a 0.2 THz extended interaction oscillator driven by a pseudospark-sourced sheet electron beam,” IEEE Transactions on Electron Devices, vol. 63, no. 12, pp. 4955-4960, Dec. 2016.
30) G. X. Shu, et al. “An improved slow-wave structure for the sheet-beam traveling-wave tube,” IEEE Transactions on Electron Devices, vol. 63, no. 5, pp. 2089-2096, May. 2016.
代表性授权专利
1) 舒国响,等.基于E面Y形分支波导的TEn0模式激励器[P],中国发明专利,ZL 202210966439.4(已授权)
2) 舒国响,等.一种基于H-T接头功分网络的矩形TE10模-圆波导TE21模的模式变换器[P],中国发明专利,ZL 201910724861.7(已授权)
3) 舒国响,等.一种基于多分支波导的高阶过模功率耦合器[P],中国发明专利,ZL 201910725244.9 (已授权)
4) 舒国响,等.一种基于H-T功分网络的TE10-TEn0模式变换器[P],中国发明专利,ZL 201910447076.1(已授权)
分会场邀请报告
1) 2023.11,第九届全国太赫兹科学技术学术年会,北京
2) 2023.10,全国光电子、光子材料与器件学术会议,青岛
3) 2023.07,全国太赫兹生物物理年会,成都
4) 2023.04,中国电子学会青年科学家论坛之第四届太赫兹科学技术青年学术会议,苏州
5) 2022.12,CSRSWTC 2022,北京
6) 2022.04,PIERS 2022,杭州
7) 2021.12,IET PhASe-VE 2021,北京
8) 2021.05,GSMM 2021(中国微波周),南京
9) 2020.12,CSRSWTC 2020,福州
10) 2019.12,PIERS 2019,厦门
11) 2019.12,IET PhASe-VE 2019,北京
学术服务
1) IEEE Senior Member(高级会员)
2) 《真空电子技术》青年编委/客座主编
3) SCI期刊Electronics客座编辑
4) SCI期刊Micromachines客座编辑
5) IEEE T-MTT、IEEE EDL、IEEE TED、IEEE MWCL、JAP、POP、RSI等13个SCI期刊审稿人
6) 2023 IEEE IVEC、2022 IEEE ICMMT等国际会议TPC Member 4次
7) 2021 IEEE GSMM、2023 CSRSWTC、2024 PIERS等国际会议Session Chair(分会场主席)6次
8) 学术会议2022 IoTCIT Workshop主席,荣获最佳组织奖
9) 微电子与光电子材料与器件专家委会常务委员
10) 广东省科学技术厅人才专家库专家/学术桥评审专家库成员
11) 全国本科毕业论文(设计)抽检评审专家库专家
12) 中国电子学会会员
奖励荣誉
1) 2023年度中国电子学会优秀硕士学位论文指导教师(2023年)
2) 指导硕士生荣获第九届中国国际“互联网+”大学生创新创业大赛广东省分赛银奖(2023年)
3) 深大“年度考核优秀”4次(2023年,2022年,2020年,2019年)
4) 指导硕士生荣获“研究生国家奖学金”(Top 4%)4人(2023年/2022年)
5) 指导硕士生荣获“永利集团优秀毕业研究生”(Top 9%)2人(2023年)
6) 指导硕士生荣获“荔园挑战”创新创业大赛铜奖(2023年)
7) 深大“百篇优秀本科毕业论文指导教师” (Top 2%) 2次(2022/2021年)
8) 荣获IEEE EDL、IEEE TED Golden Reviewer(金牌审稿人)(2021/2020年)
9) 深大“新锐研究生导师”(2021年)
10) 指导硕士生荣获2021年IET PhASe-VE会议优秀论文二等奖(2021年)
11) 指导硕士生荣获2020年全国太赫兹年会优秀论文海报奖(2020年)
12) 指导本科生荣获创新发展基金基础实验项目获二等奖(2020年)
13) 深大“优秀共产党员”(2019年)
14) IEEE EDL论文被选为Editors' Picks以及期刊封面(2018年)
15) APL论文被选用Editor's Pick, Top Articles in Device Physics(2018年)
人才培养
指导硕士生16名,已毕业4名,赴华为、紫光、比亚迪及研究所等单位工作。
指导20余名本科生走进实验室,部分赴北京大学、新加坡国立大学、电子科技大学、东南大学和永利集团等高校读研深造。