团队队伍

周飞

  • 办公室:
  • 导师类别:
  • E-mail:
  • 办公电话:
个人详情

个人简介:周飞,永利集团副教授、特聘研究员、硕士生导师,深圳市高层次人才(后备级)和海外高层次人才(C类),南山区领航人才”,电信学院博士后党支部书记。2007年毕业于华中科技大学电信系,获学士学位;2013年毕业于清华大学电子系,获博士学位,获清华大学优秀博士学位论文;2013年至2016年于清华大学深圳研究生院从事科研工作;2017年至伦敦大学学院(UCL)统计系从事学术访问一年;20183月起在永利集团信息工程学院任教。主要图像处理和模式识别领域的研究,曾主持和参与国家、深圳市的多个科研项目,发表学术论文50余篇,其中以第一或通讯作者身份在IEEE Signal Processing MagazineIEEE Trans. Image ProcessingIEEE Trans. MultimediaPattern Recognition等国际著名刊物上发表了多篇学术论文。他是多个国际一流期刊的审稿人,包括IEEE Trans. Image ProcessingIEEE Trans. on Human-Machine SystemsInformation ScienceIEEE Signal Processing Letters,等等,同时担任国际著名期刊NeurocomputingSignal Processing: Image Communication的客座编辑。


研究兴趣:图像/视频处理、机器视觉、模式识别,尤其是图像/视频超分辨率、逆色调映射和质量评价。


地址:致信楼N901

通讯方式:fei.zhou@szu.edu.cnflying.zhou@163.com


部分重要论文

[1] Gaofeng Cao, Fei Zhou*, Kanglin Liu, Anjia Wang, Leidong Fan, "A decoupled kernel prediction network guided by soft mask for single image HDR reconstruction, " ACM Transactions on Multimedia Computing Communications and Applications, Just Accepted. July 2022.

[2] Gaofeng Cao, Fei Zhou*, Han Yan, Anjie Wang, and Leidong Fan, "KPN-MFI: A kernel prediction network with multi-frame interaction for video inverse tone mapping, " in Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22), 2022, pp. 806–812.

[3] Fei Zhou, Rongguo Yao, Guangsen Liao, Bozhi Liu, and Guoping Qiu. "Visual saliency via embedding hierarchical knowledge in a deep neural network," IEEE Transactions on Image Processing, vol. 29, pp. 8490-8505, Aug. 2020.

[4] Fei Zhou, Qun Chen, Bozhi Liu, Guoping Qiu. "Structure and texture-aware image decomposition via training a neural network," IEEE Transactions on Image Processing, vol. 29, pp. 3458–3473, 2020.

[5] Fei Zhou, Rongguo Yao, Bozhi Liu, and Guoping Qiu, "Visual quality assessment for super-resolved images: Database and method," IEEE Transactions on Image Processing, vol. 28, no. 7, pp. 3528–3541, 2019.

[6] Wen Sun, Qingmin Liao, Jing-Hao Xue, Fei Zhou*, "SPSIM: A superpixel-based similarity index for full-reference image quality assessment," IEEE Transactions on Image Processing, vol. 27, no. 9, Sept. 2018, pp. 4232-4244.

[7] W. Yang, T. Yuan, W. Wang, Fei Zhou* and Q. Liao, "Single-Image Super-Resolution by Subdictionary Coding and Kernel Regression," in IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, no. 9, pp. 2478-2488, Sept. 2017.

[8] Shaojun Liu, Fei Zhou*, and Qingmin Liao, "Defocus map estimation from a single image based on two-parameter defocus model," IEEE Transactions on Image Processing, vol. 25, no. 12, pp. Dec, 2016.

[9] Wenming Yang, Yapeng Tian, Fei Zhou*, Qingmin Liao, Hai Chen, and Chenglin Zheng, "Consistent coding scheme for single-image super-resolution via independent dictionaries," IEEE Transactions on Multimedia, vol. 18, no. 3, pp. 313-325, Mar. 2016.

[10] Fei Zhou, Shu-Tao Xia, and Qingmin Liao, "Nonlocal pixel selection for multisurface fitting based super-resolution," IEEE Transactions on Circuits and Systems for Video Technology, vol. 24, no.12, pp. 2013-2017. Dec 2014.

[11] Fei Zhou, Wenming Yang, and Qingmin Liao, "A coarse-to-fine subpixel registration method to recover local perspective deformation in image super-resolution," IEEE Transactions on Image Processing, vol.21, no.1, pp.53-66, Jan. 2012.

[12] Fei Zhou, Wenming Yang, and Qingmin Liao, "Interpolation-based image super-resolution using multisurface fitting, " IEEE Transactions on Image Processing, vol. 21, no. 7, pp.3312-3318, Jul. 2012.

[13] Shaojun Liu, Qingmin Liao, Jing-Hao Xue, Fei Zhou*, "Defocus map estimation from a single image using improved likelihood feature and edge-based basis," Pattern Recognition, vol. 107, pp. 107485: 1–17, 2020.

[14] Rui Zhu, Fei Zhou*, Wenming Yang, and Jing-Hao Xue, "On Hypothesis Testing for Comparing Image Quality Assessment Metrics," IEEE Signal Processing Magazine, vol. 35, no. 4, Jul. 2018, pp. 133-136.

[15] Wen Sun, Fei Zhou*, Qingmin Liao, "MDID: A multiply distorted image database for quality assessment," Pattern Recognition, vol.61, 2017, pp. 153-168.

[16] Hongming Luo, Guangsen Liao, Xianxu Hou, Bozhi Liu, Fei Zhou*, Guoping Qiu. "VHS to HDTV video translation using multi-task adversarial learning," in Proceedings of International Conference on Multimedia Modeling (MMM), 2020, pp. 77-86.

[17] Fei Zhou, Guangsen Liao, Jiang Duan, Bozhi Liu, Guoping Qiu, "Tone mapping high dynamic range images based on region-adaptive self-supervised deep learning," Signal Processing: Image Communication, vol.102, pp. 116595, 2022.

[18] Shuhong Yuan and Fei Zhou*, "Multiple clues inspired banding detector in high dynamic range videos," Electronics Letters, 2022.

[19] Fei Zhou, Jinghua Chen, Bozhi Liu, "Visual saliency via selecting and reweighting festures in hierarchical fusion network," IEEE Signal Processing Letters, vol. 28, pp. 1749-1753, 2021.

[20] Fei Zhou, Tingrong Yuan, Wenming Yang, and Qingmin Liao, "Single-Image super-resolution based on compact KPCA coding and kernel regression," IEEE Signal Processing Letters, vol. 22, no. 3, pp. 336-340, Mar. 2015.

[21] Fei Zhou, Zongqing Lu, Can Wang, Wen Sun, Shu-Tao Xia, and Qingmin Liao, "Image quality assessment based on inter-patch and intra-patch similarity," Plos One, vol. 10, no. 3, e0116312, Mar. 2015.

[22] Fei Zhou and Qingmin Liao, "Single-frame image super-resolution inspired by perceptual criteria," IET Image Processing, vol. 9, no. 1, pp. 1-11, Jan. 2015.

[23] Fei Zhou, Biao Wang, and Qingmin Liao, "Super-resolution for facial image using multilateral affinity function," Neurocomputing, vol.133, no. 10, pp. 194–208, Jun. 2014.

[24] Fei Zhou, Wenming Yang, and Qingmin Liao, "Single image super-resolution using incoherent sub-dictionaries learning," IEEE Transactions on Consumer Electronics, vol. 58, no. 3, pp. 891-897, Aug. 2012.

[25] Fei Zhou, Wenming Yang, and Qingmin Liao, "Super-resolution for face image by bilateral patches, " Electronics Letters, vol. 48, no. 18, pp.1125-1126, Aug. 2012.

[26] Wen Sun, Wenming Yang, Fei Zhou*, and Qingmin Liao, "Full-reference quality assessment of contrast changed images based on local linear model," IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 1228-1232.

[27] Xiaomin Zhang, Fei Zhou*, Yang Dong, Hui Ma, and Qingmin Liao, "Microstructure analysis of silk samples using Mueller matrix determination and sparse representation," IEEE International Conference on Image Processing (ICIP), pp. 4108-4112, 2017.

[28] Shuo Chen, Fei Zhou*, Qingmin Liao, "Visual domain adaptation using weighted subspace alignment, " Visual Communications and Image Processing (VCIP), Nov. 2016pp. 1-5.

[29] Wenming Yang, Yapeng Tian, Fei Zhou*, and Qingmin Liao, "Single-image super-resolution using clustering-based global regression and propagation filtering," 3rd Asian Conference on Pattern Recognition (ACPR), Kuala Lumpur Malaysia, pp.296-300.

[30] Tingrong Yuan, Wenming Yang, Fei Zhou*, and Qingmin Liao, "Single image super-resolution via sparse KPCA and regression," IEEE International Conference on Image Processing (ICIP), Paris, Oct2014, pp.2130-2134.

[31] Wenming Yang, Tingrong Yuan, Fei Zhou*, and Qingmin Liao, "Face hallucination via position-based dictionaries coding in kernel feature space," IEEE International Conference on Smart Computing, Hong Kong, Nov. 2014, pp.131-135.

[32] Fei Zhou, Biao Wang, Wenming Yang, and Qingmin Liao, "Iterative super-resolution for facial image by local and global regression,” 19th International Conference on Multimedia Modeling, 2013, pp.414-424.

[33] Kanglin Liu, Gaofeng Cao, Fei Zhou, Bozhi Liu, Jiang Duan, Guoping Qiu, "Towards disentangling latent space for unsupervised semantic face editing," IEEE Transactions on Image Processing, 2022.

[34] Yurong Ling, Fei Zhou, Kun Guo, Jing-Hao Xue, "ASSP: An adaptive sample statistics-based pooling for full-reference image quality assessment," Elsevier Neurocomputing, 2022.

[35] Gaofeng Cao, Fei Zhou, Kanglin Liu, Bozhi Liu, "A brightness-adaptive kernel prediction network for inverse tone mapping," Elsevier Neurocomputing, vol. 464, pp. 1-14, 2021.

[36] Wei Liu, Fei Zhou, T. Lu, Jiang Duan, and Guoping Qiu, "Image defogging quality assessment: Real-world database and method," IEEE Transactions on Image Processing, vol. 30, pp. 176-190, 2021.

[37] R. Zhu, Fei Zhou, and J.-H. Xue, "MvSSIM: A quality assessment index for hyperspectral images," Neurocomputing, vol. 272, pp. 250–257, 2018.

[38] Can Wang, Xiangjun Dong, Fei Zhou, Longbing Cao, and Chi-Hung Chi, "Coupled attribute similarity learning on categorical data," IEEE Transactions on Neural Networks and Learning Systems, vol. 26, no. 4, pp. 781-796, Apr. 2015.

[39] Wenming Yang, Xiaola Huang, Fei Zhou, and Qingmin Liao. "Comparative competitive coding for personal identification by using finger vein and finger dorsal texture fusion," Information Sciences, vol.268, pp. 20–32, June 2014.

[40] Tao Wu, Fei Zhou, Qingmin Liao, "A fast 3D face reconstruction method from a single image using adjustable model," IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016, pp. 1656-1660.

[41] Xiangyi Fu, Fei Zhou, and Qingmin Liao, "Image amplification based on pixel-splitting, " IEEE International Conference on Image Processing (ICIP), Oct. 2014, pp.3919-3923.

[42] Tingrong Yuan, Fei Zhou, Wenming Yang, and Qingmin Liao, "Image super-resolution via Kernel regression of sparse coefficients," IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2014, pp. 5794-5798.


部分重要专利和软件著作权

- 授权专利/软著

1周飞; 姚荣国; 谢锐涛; 刘博智; 邱国平; 一种超分辨率图像的图像质量分析方法及系统, 2018-9-28, 中国, ZL201811140284.9

2周飞; 陈群; 刘博智; 邱国平; 一种图像分解方法及装置, 2019-8-22, 中国, CN201910776892.7

3)罗鸿铭; 周飞; 廖广森; 侯贤旭; 邱国平; 基于多任务对抗学习的视频转换方法、存储介质及终端, 2020-12-29, 中国, ZL201910333132.9

4)姚荣国;周飞;张邦文;陈群;邱国平;图像质量主观评价软件,2018SR915204,原始取得,全部权利,2018-9-8

- 在审专利/软著

1)刘康淋;曾高峰;周飞;刘博智;段江;邱国平; 一种人脸属性编辑方法、装置、智能终端及存储介质,2020-11-4,中国,CN202011219024.8

2)康波; 周飞; 陈绵毅; 邱国平; 基于浅层与深度结构纹理特征的超分图像质量评价方法, 2021-12-3,中国, CN 202111470801.0

3)梁志坚; 周飞; 袁树鸿; 邱国平; 一种能够去除带状伪像的视频逆色调映射方法及相关设备, 2021-12-2, 中国, CN202111460080.5

4)廖广森; 周飞; 罗鸿铭; 刘博智; 邱国平; 一种基于区域自适应自监督学习的图像色调映射的方法, 2020-8-14, 中国, CN202010817616.3


获批/在研/结题-科研项目

国家自然科学基金面上项目:面向逆色调映射视频感知质量的半参考客观质量评价模型研究(62271323),2023.01-2026.12,已获批,主持

广东省自然科学基金面上项目:基于场景结构提取和分层知识嵌入的视觉显著性预测(2021A1515011584),2021.012023.12,在研,主持

高端人才科研启动项目:图像超分辨率研究及其质量评价(000466),2020.012022.12,在研,主持

腾讯基础平台技术犀牛鸟专项研究计划:面向修复视频的感知质量评价模型研究(014215),2020.102021.10,结题,主持

国家自然科学基金面上项目:基于局部视图的超高分辨率RGB-D全景图像的融合与生成(61771276),2017.012020.12,结题,参加

深圳市自由探索项目:基于非局部像素选择和非线性编码系数映射的超分辨率方法(JCYJ20150331151358138),2015.082017.08,结题,主持

国家自然科学基金青年科学基金项目:基于多边亲和度函数和序列图像的人脸超分辨率研究(61301183),2014.012016.12,结题,主持

博士后基金特别资助项目:基于邻域结构和局部特征的图像质量评估方法研究(2014T70083),20142016,结题,主持

国家自然科学基金面上项目:基于多曲面拟合和单帧学习信息的图像超分辨率方法(61271393),2013.012016.12,结题,参加

博士后基金面上项目:基于多边亲和度函数和多表面拟合的人脸超分辨率方法(2013M540947),20132016,结题,主持

国家自然科学基金青年科学基金项目:面向参数测量的无规则非周期性纹理图像分析方法研究(61007004),2011.012013.12,结题,参加


其他获奖情况

深圳人工智能自然科学奖(第三顺位),图像超分辨率复原关键理论与技术研究,2022.03,深圳市人工智能学会

考核优秀奖(个人),2020-2021学年工作考核优秀,2021.09,永利集团